№4. In triangle $A B C$, a point M is the midpoint of $A B$, and a point I is the incentre. Point A_{1} is the reflection of A in $B I$, and B_{1} is the reflection of B in $A I$. Let N be the midpoint of $A_{1} B_{1}$. Prove that $I N>I M$.

First solution. Due to symmetry, we get $I A_{1}=I A$ и $I B_{1}=I B$. Therefore,

$$
\begin{aligned}
& 4\left(I N^{2}-I M^{2}\right)=\left|\overrightarrow{I A_{1}}+\overrightarrow{I B_{1}}\right|^{2}-|\overrightarrow{I A}+\overrightarrow{I B}|^{2} \\
& =\left(I A_{1}^{2}+I B_{1}^{2}+2 I A_{1} \cdot I B_{1} \cdot \cos \angle A_{1} I B_{1}\right)-\left(I A^{2}+I B^{2}+2 I A \cdot I B \cdot \cos \angle A I B\right) \\
& \\
& =2 I A \cdot I B \cdot\left(\cos \angle A_{1} I B_{1}-\cos \angle A I B\right) .
\end{aligned}
$$

So, to prove the required inequality $I N>I M$, it suffices to show that $\cos \angle A_{1} I B_{1}>\cos \angle A I B$.
Notice that $\phi=\angle A I B=90^{\circ}+\angle A C B / 2>90^{\circ}$. By symmetry again, we have $\angle A_{1} I B=\angle A I B=$ $=\angle A I B_{1}=\phi$. Therefore, if $\phi \leq 120^{\circ}$, then

$$
\angle A_{1} I B_{1}=360^{\circ}-\left(\angle A_{1} I B+\angle A I B+\angle A I B_{1}\right)=360^{\circ}-3 \phi \in\left[0^{\circ}, \phi\right)
$$

since $\phi>90^{\circ}$. This yields the desired inequality.
Otherwise, if $\phi>120^{\circ}$, then

$$
\angle A_{1} I B_{1}=\left(\angle A_{1} I B+\angle A I B+\angle A I B_{1}\right)-360^{\circ}=3 \phi-360^{\circ} \in\left(0^{\circ}, \phi\right),
$$

since $\phi<180^{\circ}$; this again yields the desired inequality.
Second solution. Notice that the angle $A I B$ is obtuse, since $\angle A I B=90^{\circ}+\angle A C B / 2$. Clearly, A_{1} lies on the line $B C$, while B_{1} lies on the line $A C$. Let D and E denote the midpoints of the base sides $B B_{1}$ and $A A_{1}$ in the isosceles triangles $B A B_{1}$ and $A B A_{1}$, respectively. Then $\angle A D B=\angle A E B=90^{\circ}$, which means that $A E$ and $B D$ are altitudes in the obtuse triangle $A I B$. Hence, the points I and M share the same side of the line $D E$. Moreover, the points A, B, D, and E lie on a circle centered at M.

The properties of a midline yield $D N=B A_{1} / 2=B A / 2=$ $=D M$, so that $D N=D M=A B / 2$. Similarly, we obtain $E N=$ $=E M=A B / 2$. Consequently, the quadrilateral $M D N E$ is a rhombus, in which the line $D E$ is the perpendicular bisector of the diagonal $M N$. Since I and M share the same side of that line, we have $I M<I N$. (Indeed, the semiplane of the perpendicular
 bisector $D E$ containing M is the locus of the points which are closer to M than to N. Since I lies in that halfplane, we have $I M<I N$.)
№5. A polynomial $f(x)$ with real coefficients of degree greater than 1 is given. Prove that there are infinitely many positive integers which cannot be represented in the form

$$
f(n+1)+f(n+2)+\cdots+f(n+k)
$$

where n and k are positive integers.

Solution.

Let the leading term of $f(x)$ be $a x^{m}$. If $a<0$, the number of integer x with positive $f(x)$ is finite, therefore sum $f(n+1)+\cdots+f(n+k)$ is bounded and has finitely many positive values. Thus we can confine ourselves to the case $a>0$. In this case $f(x)$ takes finitely many negative values for positive integer x, and there is some d such that $f(x+1)+f(x+2)+\cdots+f(x+d)$ is always positive.

Lemma. If $P(x)$ is a polynomial of degree m with positive leading coefficient, then $P(x)>b x^{m}$ for some positive b and all x greater than some C.

Indeed, if r is the leading coefficient of P, for each $b<r$ the polynomial $P(x)-b x^{m}$ has positive leading coefficient and is positive for lare enough x.

Polynomials $f\left(\frac{x}{2}-1\right)$ and $f(x)$ have the same degree m, therefore there exists $b>0$ such that $f(x)>$ $>b x^{m}$, and $f\left(\frac{x}{2}-1\right)>b x^{m}$ for $x>C$.

Let us consider large enough M and evaluate the number of pairs (n, k) such that $f(n+1)+\cdots+$ $+f(n+k) \leq M$.

If $n>\sqrt{\frac{M}{b}}$ (we take M large enough for the right-hand side to be greater than C), each term in the sum is greater than $b n^{m} \geq b n^{2}>M$, thus the sum is greater than M.

If $k>\sqrt[3]{\frac{2 M}{b}}$ (we take M large enough for the right-hand side to be greater than $2 d$), at least $k / 2$ among the numbers $n+1, \ldots, n+k$ are no less than $k / 2-1$, therefore, the respective terms are greater than $b k^{m} \geq b k^{2}$, and their sum is greater than $\frac{k}{2} \times b k^{2}=\frac{b k^{3}}{2}>M$. The rest of the sum is positive (since $k>2 d$), and the entire sum is again greater than M.

Hende the number of pairs (n, k) of positive integers such that $f(n+1)+\cdots+f(n+k) \leq M$ does not exceed $\sqrt[3]{\frac{2}{b}} \cdot \sqrt{\frac{1}{b}} \cdot M^{5 / 6}$, which is less than $M / 2$ for large enough M. We see that there are at least $M / 2$ positive integers without desired representation, and M can be arbitrarily large.
№6. Do there exist two bounded sequences a_{1}, a_{2}, \ldots and b_{1}, b_{2}, \ldots such that for each positive integers n and $m>n$ at least one of the two inequalities $\left|a_{m}-a_{n}\right|>\frac{1}{\sqrt{n}},\left|b_{m}-b_{n}\right|>\frac{1}{\sqrt{n}}$ holds?

Solution. Suppose such sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ exist. For each pair (x, y) of real numbers we consider the corresponding point (x, y) in the coordinate plane. Let P_{n} for each n denote the point $\left(a_{n}, b_{n}\right)$. The condition in the problem requires that the square $\left\{(x, y):\left|x-a_{n}\right| \leq \frac{1}{\sqrt{n}},\left|y-b_{n}\right| \leq \frac{1}{\sqrt{n}}\right\}$ does not contain P_{m} for $m \neq n$.

For each point A_{n} we construct its private square $\left\{(x, y):\left|x-a_{n}\right| \leq \frac{1}{2 \sqrt{n}},\left|y-b_{n}\right| \leq \frac{1}{2 \sqrt{n}}\right\}$. The condition implies that private squares of points A_{n} and A_{m} are disjoint when $m \neq n$.

Let $\left|a_{n}\right|<C,\left|b_{n}\right|<C$ for all n. Then all private squares of points A_{n} lie in the square $\{(x, y):|x| \leq C+$ $\left.+\frac{1}{2},|y| \leq C+\frac{1}{2}\right\}$ with area $(2 C+1)^{2}$. However private squares do not intersect, and the private square of P_{n} has area $\frac{1}{n}$. The series $1+\frac{1}{2}+\frac{1}{3}+\cdots$ diverges; in particular, it contains some finite number of terms with sum greater than $(2 C+1)^{2}$, which is impossible if the respetive private square lie inside a square with area $(2 C+1)^{2}$ and do not intersect. This contradiction shows that the desired sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ do not exist.

