XVIII International Zhautykov Olympiad in Mathematics. Day 1. Solutions

Neq. In triangle ABC, a point M is the midpoint of AB, and a point [ is the incentre. Point A; is the
reflection of A in BI, and Bj is the reflection of B in Al. Let N be the midpoint of A;B;. Prove that
IN > IM.

First solution. Due to symmetry, we get [A; = IA u IB; = I B. Therefore,

A(IN® — IM?) = |TA; + IB|" — |TA+ 1B’
= (IA?+ 1B} 4+ 2[A, - IB; - cos LAIB,) — (IA* + IB*+2[A-IB - cos ZAIB)
=2IA-IB- (cos LA1IB; — cos LZAIB).

So, to prove the required inequality IN > I M, it suffices to show that cos ZAIB; > cos ZAIB.
Notice that ¢ = LAIB = 90° + ZACB/2 > 90°. By symmetry again, we have ZA;IB = ZAIB =
= LAI By = ¢. Therefore, if ¢ < 120°, then

LAIBy =360° — (LAIB + LAIB + ZAIB;) = 360° — 3¢ € [0°, ¢),

since ¢ > 90°. This yields the desired inequality.
Otherwise, if ¢ > 120°, then

LAIBy = (LAIB + ZAIB + ZAIB;) — 360° = 3¢ — 360° € (0°, ¢),

since ¢ < 180°; this again yields the desired inequality.

Second solution. Notice that the angle AIB is obtuse, since
LAIB = 90° + LACB/2. Clearly, A; lies on the line BC, while
B lies on the line AC. Let D and E denote the midpoints of the
base sides BB, and AA; in the isosceles triangles BAB; and ABA;,
respectively. Then ZADB = ZAEB = 90°, which means that AF
and BD are altitudes in the obtuse triangle Al B. Hence, the points
I and M share the same side of the line DE. Moreover, the points A,
B, D, and FE lie on a circle centered at M.

The properties of a midline yield DN = BA;/2 = BA/2 =
= DM, so that DN = DM = AB/2. Similarly, we obtain EN =
= EM = AB/2. Consequently, the quadrilateral MDNE is a
rhombus, in which the line DFE is the perpendicular bisector of
the diagonal M N. Since I and M share the same side of that line, % ’ M ’ B
we have IM < IN. (Indeed, the semiplane of the perpendicular
bisector DFE containing M is the locus of the points which are closer to M than to . Since [ lies in that
halfplane, we have IM < IN.)




Ne5. A polynomial f(x) with real coefficients of degree greater than 1 is given. Prove that there are
infinitely many positive integers which cannot be represented in the form

fln+1)+f(n+2)4+--+ f(n+k)

where n and k are positive integers.

Solution.

Let the leading term of f(x) be ax™. If a < 0, the number of integer x with positive f(x) is finite,
therefore sum f(n 4+ 1)+ ---+ f(n + k) is bounded and has finitely many positive values. Thus we can
confine ourselves to the case a > 0. In this case f(x) takes finitely many negative values for positive integer
x, and there is some d such that f(x + 1) + f(x +2) + - -+ f(z + d) is always positive.

Lemma. If P(z) is a polynomial of degree m with positive leading coefficient, then P(z) > bz™ for
some positive b and all z greater than some C'.

Indeed, if r is the leading coefficient of P, for each b < r the polynomial P(z)—bz™ has positive leading
coefficient and is positive for lare enough .

Polynomials f(§ — 1) and f(x) have the same degree m, therefore there exists b > 0 such that f(z) >
> bx™, and f(5 —1) > ba™ for v > C.

Let us consider large enough M and evaluate the number of pairs (n, k) such that f(n+1) 4 --- +
+ fin+k) <M.

Ifn > % (we take M large enough for the right-hand side to be greater than C'), each term in the
sum is greater than bn™ > bn? > M, thus the sum is greater than M.

If k> {/ZL (we take M large enough for the right-hand side to be greater than 2d), at least k/2

among the numbers n + 1, ..., n + k are no less than k/2 — 1, therefore, the respective terms are greater
than bk™ > bk?, and their sum is greater than % X bk* = % > M. The rest of the sum is positive (since
k > 2d), and the entire sum is again greater than M.

Hende the number of pairs (n, k) of positive integers such that f(n+1)+---+ f(n+ k) < M does not

exceed \’/% \/% M?®/6 which is less than M /2 for large enough M. We see that there are at least M /2
positive integers without desired representation, and M can be arbitrarily large.



Ne6. Do there exist two bounded sequences aq,as, ... and by, bs, ... such that for each positive integers n
and m > n at least one of the two inequalities |a,, — a,| > \/iﬁ, |b — bn| > \/iﬁ holds?

Solution. Suppose such sequences (a,,) and (b,) exist. For each pair (z,y) of real numbers we consider
the corresponding point (x,y) in the coordinate plane. Let P, for each n denote the point (a,,b,). The
condition in the problem requires that the square {(x,y) : |z —a,| < \/Lﬁ, ly —ba| < \/Lﬁ} does not contain
P, for m # n.

For each point A, we construct its private square {(z,y) : |z — a,| < #ﬁ, ly — ba| < ﬁﬁ} The
condition implies that private squares of points A, and A,, are disjoint when m # n.

Let |a,| < C, |b,| < C for all n. Then all private squares of points A, lie in the square {(z,y) : |z] < C+
+ %, ly] < C+ %} with area (2C' +1)%. However private squares do not intersect, and the private square of

P, has area % The series 1 + % + % + - -+ diverges; in particular, it contains some finite number of terms

with sum greater than (2C + 1)2, which is impossible if the respetive private square lie inside a square
with area (2C' + 1)? and do not intersect. This contradiction shows that the desired sequences (a,) and
(b,) do not exist.



