№1. Non-zero polynomials $P(x), Q(x)$, and $R(x)$ with real coefficients satisfy the identities

$$
P(x)+Q(x)+R(x)=P(Q(x))+Q(R(x))+R(P(x))=0 .
$$

Prove that the degrees of the three polynomials are all even.
Solution. Let n be the largest of the degrees of the three polynomials. Denote by a, b, and c the coefficients of x^{n} at $P(x), Q(x)$, and $R(x)$, respectively (some of those coefficients might vanish).

The coefficients of x^{n} at $P(x)+Q(x)+R(x)$, as well as of $x^{n^{2}}$ at $P(Q(x))+Q(R(x))+R(P(x))$, both vanish. Hence,

$$
\begin{equation*}
a+b+c=0 \quad \text { and } \quad a b^{n}+b c^{n}+c a^{n}=0 \tag{*}
\end{equation*}
$$

Further we make use only of the two equalities in (*).
The first equality yields that at least two numbers among a, b, and c are nonzero. If the third number (say, c) vanishes, then the second equality is violated. Therefore, all three polynomials have degree n, and we need to prove n is even.

Assume the contrary, for the sake of contradiction. Without loss of generality, the numbers a and b have the same sign. Changing the sign of all three numbers a, b, and c, if necessary, we achieve $a, b>0$ (this change does not break $(*)$). Then we have $c=-(a+b)<0$ and $0<a, b<|c|$; hence $b c^{n}$ and $c a^{n}$ are negative, and therefore

$$
\left|b c^{n}+c a^{n}\right|>\left|b c^{n}\right|=|c| \cdot b \cdot|c|^{n-1}>a \cdot b \cdot b^{n-1}=a b^{n} .
$$

This contradicts the secund equality in $(*)$.
Thus, all three degrees are equal to an even number n.

Marking scheme

The points provided for differenmt parts are automatically additive!
Part 1: $\operatorname{deg} P=\operatorname{deg} Q=\operatorname{deg} R$.
A proof that all three degrees are equal - 2 points
Only a proof that the two largest degrees are equal - 0 points
Part 2; all thjjree degrees are even.
A proof that the largest degree d is even - 5 points
A system $(*)$ is written down explicitly, with no subsequent essential advantage - 1 point instead of 5 .
№2. A ten-level 2-tree is drawn in the plane: a vertex A_{1} is marked, it is connected by segments with two vertices B_{1} and B_{2}, each of B_{1} and B_{2} is connected by segments with two of the four vertices $C_{1}, C_{2}, C_{3}, C_{4}$ (each C_{i} is connected with one B_{j} exactly); and so on, up to 512 vertices J_{1}, \ldots, J_{512}. Each of the vertices J_{1}, \ldots, J_{512} is coloured blue or golden. Consider all permutations f of the vertices
 of this tree, such that (i) if X and Y are connected with a segment, then so are $f(X)$ and $f(Y)$, and (ii) if X is coloured, then $f(X)$ has the same colour. Find the maximum M such that there are at least M permutations with these properties, regardless of the colouring.

Solution. The answer is $2^{2^{7}}$.
First we ned a suitable terminology. Similarly to 10-level 2 -tree we can define a k-level 2 -tree for $k \geq 1$. For convenience we suppose that all the segments between vertices are directed from a letter to the next one. The number of the letter marking a vertex we call the level of this vertex; thus A_{1} is the only vertex of level $1, B_{1}$ and B_{2} belong to level 2 and so on). We will also call descendants of a vertex X all vertices which can be reached from X by directed segments.

Let T_{1} and T_{2} be two k-level 2-trees with coloured leaves. We call a bijection $f: T_{1} \rightarrow T_{2}$ isomorphism when two conditions are satisfied: (i) if two vertices X and Y are connected by an edge in T_{1}, then $f(X)$ and $f(Y)$ are connected by an edge in T_{2}, and (ii) if X has some colour in T_{1}, then $f(X)$ has the same colour in T_{2}. When $T_{1}=T_{2}$, we call f automorphism of the tree. By $\chi(k)$ we denote the minimal number of automorphism a k-level 2 -tree with coloured leaves can have (the minimum is over all colourings). Our problem is to find $\chi(10)$.

We start with almost obvious
Lemma 1. Isomorphism of trees preserves the level of a vertex.
Proof. Isomorphism f cannot diminish the degree of a vertex. Indeed, neighbours of each vertex X become neighbours of $f(X)$, therefore the degree of $f(X)$ is not less than the degree of X. By pigeonhole principle it also means that the degree can not increase. It follows that the last level vertices go to the last level vertices. Therefore vertices of the previous level go to the same level, since they remain neighbours of the last-level vertices, and so on.

Now we are ready to solve the problem.

First proof of the lower bound, by induction.

Proposition 1. For each $k \geq 2$ we have $\chi(k) \geq(\chi(k-1))^{2}$.
Proof. In a k-level tree the descendants of B_{1} (including B_{1}) form a $k-1$-level tree T_{1}. This graph has at least $\chi(k-1)$ different automorphisms. The same is true for tree T_{2} formed by the descendants of B_{2}. Let g and h be automorphisms of T_{1} and T_{2} respectively. Now we can define mapping f of the whole tree applying g to descendans of B_{1}, h to descendants of B_{2} and A to itself. Obviously f is an automorphism: for $X=A$ the condition holds since B_{1} and B_{2} were mapped to themselves (by Lemma 1), and for X in T_{1} or T_{2} because g and h are automorphisms. Thus for each pair (g, h) there is an automorphism f, different pairs produce different f, and the number of pairs is at least $(\chi(k-1))^{2}$.

Corollary. For $k \geq 3$ we have $\chi(k) \geq 2^{2^{k-3}}$.
Proof. This inequality is proved by induction, with Proposition 1 as induction step. It remains to check it for $k=3$. If in a 3-level 2-tree at least one of the vertices B_{1}, B_{2} has two descendants of the same colour, there is an automorphism exchanging these two vertices and preserving the rest. If each of B_{1}, B_{2} has obe blue and one golden descendant, there is an automorphism exchanging B_{1} and B_{2} and preserving colours of their descendant. In both cases the number of automorphisms (including the identical one) is at least 2 .

Second proof of the lower bound, without induction.

We already know that every 3-level 2-tree with (four) coloured leaves there are at least two colourpreservin automorphisms. Now every n-level tree, $n \geq 3$, has 2^{n-3} vertices of level $n-2$, and the descendants of each of these vertices form a 3-level tree. It is enough to consider automorphisms preserving vertices of level $n-3$ (and, a fortiori, of all lesser levels). Such an automorhism can act on the descendants of each of 2^{n-3} vertices of level $n-2$ in at least 2 ways. Thus there are at least $2^{2^{n-3}}$ such automorphisms.

It remains to construct for each $k \geq 3$ a colouring of k-level tree a colouring admitting exactly $2^{2^{k-3}}$ automorphisms. As it happens sometimes, we will prove somewhat more.

Proposition 2. For each $k \geqslant 3$ there are three colourings $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$ of leaves of k-level 2-tree such that the trees with these colourings are not isomorphic, and each of these colourings admits $2^{2^{k-3}}$ automorphisms exactly.

Proof. For $k=3$ let C_{1}, C_{2} be the descendants of B_{1}, and C_{3}, C_{4} the descendants of B_{2}. The three colourings are the following: C_{1}, C_{2}, C_{3} blue, C_{4} golden; C_{1}, C_{2}, C_{3} golden, C_{4} blue; C_{1}, C_{3} blue, C_{2}, C_{4} golden. Obviously the trees with these colourings are not isomorphic and admit two automorphisms each.

The induction step. Let $\mathcal{M}_{1}, \mathcal{M}_{2}, \mathcal{M}_{3}$ be the desired colourings of k-level tree. Consider the following colourings of the ($k+1$)-level tree:

- \mathcal{M}_{1} for descendants of B_{1} and \mathcal{M}_{2} for descendants of B_{2};
- \mathcal{M}_{2} for descendants of B_{1} and \mathcal{M}_{3} for descendants of B_{2};
- \mathcal{M}_{3} for descendants of B_{1} and \mathcal{M}_{1} for descendants of B_{2}.

It is quite obvious that these three colourings are not isomorphic and have the desired number of automorphisms.

Comment to the example. Note that in fact we solved the following problem: find a colouring of $(n-2)$ level tree in 3 colours such that only identical automorphism preserves the colours. Indeed, there are three mutually non-isomorphic colourings of 3 -level tree in 2 colours having only 2 automorphisms. We want the colouring of the descendants of each vertex of level $n-2$ to be one of these colourings. The correspondence between vertices of level $n-2$ and these three colouring must be the desired colouring of $n-2$-level tree admitting only identical automorphism.

Marking scheme

1. Answer:
(and points are not deducted if Lemma 1 is not proved)
2. Example and lower bound:

3 points each not additive with (1)
№3. In parallelogram $A B C D$ with acute angle A a point N is chosen on the segment $A D$, and a point M on the segment $C N$ so that $A B=B M=C M$. Point K is the reflection of N in line $M D$. The line $M K$ meets the segment $A D$ at point L. Let P be the common point of the circumcircles of $A M D$ and $C N K$ such that A and P share the same side of the line $M K$. Prove that $\angle C P M=\angle D P L$.

Solution. Since $C M=A B=C D$, the triangle $C M D$ is isosceles. Therefore, $\angle C D M+\angle D M K=$ $=\angle C M D+\angle D M N=180^{\circ}$, and hence $M K \| C D$.

Let E be the reflection of C in the line $M D$. Then both quadrilaterals $D C M E$ and $A B M E$ are rhombi with equal side lengths, as $M E\|C D\| A B$ and $M E=M C=C D=A B=B M$. Now, $M K \| C D$ implies that the point E lies on the line $K L$. Taking into account that $A E=D E$, we obtain $\angle D K E=$ $=\angle D K M=\angle D N M=\angle N D E=\angle N A E$. So the quadrilateral $A E D K$ is cyclic in some circle ω_{1}.

Let ω_{2} and ω_{3} denote the circumcircles of the triangles $A M D$ and $C N K$, respectively (since $A E=$ $=D E=M E$, the point E is the center of ω_{2}). By symmetry in $M D$, the quadrilateral $C K N E$ is an isosceles trapezoid, so the point E lies on ω_{3}. Let ω_{2} and ω_{3} meet again at Q. The point $L=A D \cap K E$ is the radical center of the circles ω_{1}, ω_{2}, and ω_{3}, so L lies on line $P Q$.

Let the ray $E C$ meet ω_{2} at I. Then the arcs $I M$ and $I D$ in circle ω_{2} are congruent, so that I lies on the internal angle bisector of $\angle D P M$. But the point I lies also on the internal angle bisector of $\angle C P Q$, since $\angle Q P I=\angle Q E I / 2=\angle Q E C / 2=\angle Q P C / 2$. Therefore, the lines $P M$ and $P D$ are symmetric to each other with respect to the internal angle bisector of $\angle Q P C$, which yields the desired equality $\angle C P M=\angle D P L$.

Remark 1. The points M and D are isogonally conjugate with respect to the triangle $C P Q$, while I is the incenter of that triangle.

Remark 2. The point M is the incenter of the triangle $A K D$.

Marking scheme

An unfinished analytical solution (by means of Cartesian coordinates, complex numbers, vectors, trigonometric formulas, etc.):

$$
0 \text { points }
$$

Partial score

The points listed below are to be added to each other.
Let Q denote the second meeting point of the circles $(A M D)$ and (CNK).

2. A proof that the quadrilateral $A E D K$ is cyclic: ... 2 points

4. A reduction of the problem statement to the fact that L lies on $P Q \ldots \ldots \ldots \ldots \ldots \ldots . .3$ points

