
XVIII International Zhautykov Olympiad in Mathematics. Day 1. Solutions

�1. Non-zero polynomials P (x), Q(x), and R(x) with real coe�cients satisfy the identities

P (x) +Q(x) +R(x) = P (Q(x)) +Q(R(x)) +R(P (x)) = 0.

Prove that the degrees of the three polynomials are all even.

Solution. Let n be the largest of the degrees of the three polynomials. Denote by a, b, and c the
coe�cients of xn at P (x), Q(x), and R(x), respectively (some of those coe�cients might vanish).

The coe�cients of xn at P (x) +Q(x) +R(x), as well as of xn2
at P (Q(x)) +Q(R(x)) +R(P (x)), both

vanish. Hence,
a+ b+ c = 0 and abn + bcn + can = 0. (∗)

Further we make use only of the two equalities in (∗).
The �rst equality yields that at least two numbers among a, b, and c are nonzero. If the third number

(say, c) vanishes, then the second equality is violated. Therefore, all three polynomials have degree n, and
we need to prove n is even.

Assume the contrary, for the sake of contradiction. Without loss of generality, the numbers a and b
have the same sign. Changing the sign of all three numbers a, b, and c, if necessary, we achieve a, b > 0
(this change does not break (∗)). Then we have c = −(a+ b) < 0 and 0 < a, b < |c|; hence bcn and can are
negative, and therefore

|bcn + can| > |bcn| = |c| · b · |c|n−1 > a · b · bn−1 = abn.

This contradicts the secund equality in (∗).
Thus, all three degrees are equal to an even number n.

Marking scheme

The points provided for di�erenmt parts are automatically additive!

Part 1: degP = degQ = degR.
A proof that all three degrees are equal � 2 points

Only a proof that the two largest degrees are equal � 0 points

Part 2; all thjjree degrees are even.

A proof that the largest degree d is even � 5 points

A system (∗) is written down explicitly, with no subsequent essential advantage � 1 point instead of 5.



. . . . . . . . . . . .

�2. A ten-level 2-tree is drawn in the plane: a vertex A1 is marked, it is connected
by segments with two vertices B1 and B2, each of B1 and B2 is connected by
segments with two of the four vertices C1, C2, C3, C4 (each Ci is connected with
one Bj exactly); and so on, up to 512 vertices J1, . . . , J512. Each of the vertices
J1, . . . , J512 is coloured blue or golden. Consider all permutations f of the vertices
of this tree, such that (i) if X and Y are connected with a segment, then so are
f(X) and f(Y ), and (ii) if X is coloured, then f(X) has the same colour. Find the maximum M such that
there are at least M permutations with these properties, regardless of the colouring.

Solution. The answer is 22
7
.

First we ned a suitable terminology. Similarly to 10-level 2-tree we can de�ne a k-level 2-tree for k ≥ 1.
For convenience we suppose that all the segments between vertices are directed from a letter to the next
one. The number of the letter marking a vertex we call the level of this vertex; thus A1 is the only vertex
of level 1, B1 and B2 belong to level 2 and so on). We will also call descendants of a vertex X all vertices
which can be reached from X by directed segments.

Let T1 and T2 be two k-level 2-trees with coloured leaves. We call a bijection f : T1 → T2 isomorphism

when two conditions are satis�ed: (i) if two vertices X and Y are connected by an edge in T1, then f(X)
and f(Y ) are connected by an edge in T2, and (ii) if X has some colour in T1, then f(X) has the same
colour in T2. When T1 = T2, we call f automorphism of the tree. By χ(k) we denote the minimal number
of automorphism a k-level 2-tree with coloured leaves can have (the minimum is over all colourings). Our
problem is to �nd χ(10).

We start with almost obvious
Lemma 1. Isomorphism of trees preserves the level of a vertex.
Proof. Isomorphism f cannot diminish the degree of a vertex. Indeed, neighbours of each vertex X

become neighbours of f(X), therefore the degree of f(X) is not less than the degree of X. By pigeonhole
principle it also means that the degree can not increase. It follows that the last level vertices go to the last
level vertices. Therefore vertices of the previous level go to the same level, since they remain neighbours
of the last-level vertices, and so on.

Now we are ready to solve the problem.
First proof of the lower bound, by induction.

Proposition 1. For each k ≥ 2 we have χ(k) ≥ (χ(k − 1))2.
Proof. In a k-level tree the descendants of B1 (including B1) form a k−1-level tree T1. This graph has

at least χ(k − 1) di�erent automorphisms. The same is true for tree T2 formed by the descendants of B2.
Let g and h be automorphisms of T1 and T2 respectively. Now we can de�ne mapping f of the whole tree
applying g to descendans of B1, h to descendants of B2 and A to itself. Obviously f is an automorphism:
for X = A the condition holds since B1 and B2 were mapped to themselves (by Lemma 1), and for X in T1

or T2 because g and h are automorphisms. Thus for each pair (g, h) there is an automorphism f , di�erent
pairs produce di�erent f , and the number of pairs is at least (χ(k − 1))2.

Corollary. For k ≥ 3 we have χ(k) ≥ 22
k−3

.
Proof. This inequality is proved by induction, with Proposition 1 as induction step. It remains to

check it for k = 3. If in a 3-level 2-tree at least one of the vertices B1, B2 has two descendants of the same
colour, there is an automorphism exchanging these two vertices and preserving the rest. If each of B1, B2

has obe blue and one golden descendant, there is an automorphism exchanging B1 and B2 and preserving
colours of their descendant. In both cases the number of automorphisms (including the identical one) is
at least 2.

Second proof of the lower bound, without induction.

We already know that every 3-level 2-tree with (four) coloured leaves there are at least two colour-
preservin automorphisms. Now every n-level tree, n ≥ 3, has 2n−3 vertices of level n− 2, and the
descendants of each of these vertices form a 3-level tree. It is enough to consider automorphisms preserving
vertices of level n− 3 (and, a fortiori, of all lesser levels). Such an automorhism can act on the descendants
of each of 2n−3 vertices of level n−2 in at least 2 ways. Thus there are at least 22

n−3
such automorphisms.

It remains to construct for each k ≥ 3 a colouring of k-level tree a colouring admitting exactly 22
k−3

automorphisms. As it happens sometimes, we will prove somewhat more.



Proposition 2. For each k ⩾ 3 there are three colourings M1,M2,M3 of leaves of k-level 2-tree
such that the trees with these colourings are not isomorphic, and each of these colourings admits 22

k−3

automorphisms exactly.
Proof. For k = 3 let C1, C2 be the descendants of B1, and C3, C4 the descendants of B2. The three

colourings are the following: C1, C2, C3 blue, C4 golden; C1, C2, C3 golden, C4 blue; C1, C3 blue, C2, C4

golden. Obviously the trees with these colourings are not isomorphic and admit two automorphisms each.
The induction step. Let M1,M2,M3 be the desired colourings of k-level tree. Consider the following

colourings of the (k + 1)-level tree:

� M1 for descendants of B1 and M2 for descendants of B2;

� M2 for descendants of B1 and M3 for descendants of B2;

� M3 for descendants of B1 and M1 for descendants of B2.

It is quite obvious that these three colourings are not isomorphic and have the desired number of
automorphisms.

Comment to the example. Note that in fact we solved the following problem: �nd a colouring of (n− 2)-
level tree in 3 colours such that only identical automorphism preserves the colours. Indeed, there are three
mutually non-isomorphic colourings of 3-level tree in 2 colours having only 2 automorphisms. We want the
colouring of the descendants of each vertex of level n− 2 to be one of these colourings. The correspondence
between vertices of level n− 2 and these three colouring must be the desired colouring of n− 2-level tree
admitting only identical automorphism.

Marking scheme

1. Answer: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 point

2. Lemma 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 points

(and points are not deducted if Lemma 1 is not proved)

3. Example and lower bound: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 points each

not additive with (1)



�3. In parallelogram ABCD with acute angle A a point N is chosen on the segment AD, and a point M
on the segment CN so that AB = BM = CM . Point K is the re�ection of N in line MD. The line MK
meets the segment AD at point L. Let P be the common point of the circumcircles of AMD and CNK
such that A and P share the same side of the line MK. Prove that ∠CPM = ∠DPL.

Solution. Since CM = AB = CD, the triangle CMD is isosceles. Therefore, ∠CDM + ∠DMK =
= ∠CMD + ∠DMN = 180◦, and hence MK ∥ CD.

Let E be the re�ection of C in the line MD. Then both quadrilaterals DCME and ABME are rhombi
with equal side lengths, as ME ∥ CD ∥ AB and ME = MC = CD = AB = BM . Now, MK ∥ CD
implies that the point E lies on the line KL. Taking into account that AE = DE, we obtain ∠DKE =
= ∠DKM = ∠DNM = ∠NDE = ∠NAE. So the quadrilateral AEDK is cyclic in some circle ω1.
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ω1

ω2

ω3

Let ω2 and ω3 denote the circumcircles of the triangles AMD and CNK, respectively (since AE =
= DE = ME, the point E is the center of ω2). By symmetry in MD, the quadrilateral CKNE is an
isosceles trapezoid, so the point E lies on ω3. Let ω2 and ω3 meet again at Q. The point L = AD ∩ KE
is the radical center of the circles ω1, ω2, and ω3, so L lies on line PQ.

Let the ray EC meet ω2 at I. Then the arcs IM and ID in circle ω2 are congruent, so that I lies on the
internal angle bisector of ∠DPM . But the point I lies also on the internal angle bisector of ∠CPQ, since
∠QPI = ∠QEI/2 = ∠QEC/2 = ∠QPC/2. Therefore, the lines PM and PD are symmetric to each other
with respect to the internal angle bisector of ∠QPC, which yields the desired equality ∠CPM = ∠DPL.

Remark 1. The points M and D are isogonally conjugate with respect to the triangle CPQ, while I
is the incenter of that triangle.

Remark 2. The point M is the incenter of the triangle AKD.

Marking scheme

An un�nished analytical solution (by means of Cartesian coordinates, complex numbers, vectors,
trigonometric formulas, etc.): . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 points

Partial score

The points listed below are to be added to each other.

Let Q denote the second meeting point of the circles (AMD) and (CNK).

1. A proof that MK ∥ CD: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 point

2. A proof that the quadrilateral AEDK is cyclic: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 points

3. A proof that L lies on the line PQ: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 point

4. A reduction of the problem statement to the fact that L lies on PQ . . . . . . . . . . . . . . . . . . . . .3 points


