Complete solution of each problem is worth 7 points.

Marking scheme for problem 1

(i) the claim is proved for prime $n: 2$ points
(ii) the existence of positive d such that $2^{d} \equiv 1(\bmod n)$ is declared without the condition $(2, n)=1:-1$ point
(iii) the solution assumes that c or d are less than $\varphi(n):-1$ point

Marking scheme for problem 2

I. Correct example for $k=2: 1$ point
II. Correct proof of the estimate $k \leq 2: 6$ points

Partial achievements in II
II.1. Noting that there are no 3 pairwise disjoint subsets or, equivalently, if subsets A and B are both disjoint with some C then A and B are not disjoint: 1 point
II. 2. Proving that for any disjoint subsets A and B there is unique C intersecting both A and B: 2 points
II.3. Proving the estimate under the assumption that all C_{j} in the official solution intersect different $B_{i}: 3$ points
II.1, II. 2 and II. 3 are not additive, but any of them is additive with I.
III. The answer without an example: 0 points
IV. Proving that k is even: 0 points

Marking scheme for problem 3

1. Use of Ptolemy's theorem: 0 points
2. The inequality $A C \cdot B D=A B \cdot C D+A D \cdot B C \geq 3 \sqrt[3]{A B \cdot C D \cdot \frac{A D \cdot B C}{2} \cdot \frac{A D \cdot B C}{2}}$ or similar for quadrilaterals $B C D E, C D E F, D E F A, E F A B$, or $F A B C: 1$ point
3. Proof of the inequalities
3.1. $d_{3}^{2} \geq 64 d_{1}: 2$ points
3.2. $\sqrt[3]{d_{3}} \sqrt[6]{d_{1}} \leq \sqrt[3]{d_{2}}-\sqrt[3]{d_{1}}: 2$ points
3.3. $\sqrt[3]{d_{3}^{2}} \geq \sqrt[3]{d_{2}}+\sqrt[3]{d_{1}}: 2$ points
4. Inversion reduced the problem to the inequality $(x+y)(y+z)(z+t)(x+y+z+t) \geq 27 x y z t$: 2 points
5. Projective transformation reduced the problem to the case of a hexagon with three pairs of parallel opposite sides: 2 points
6. Use of projective transformations or inversion without getting items 5 or $6: 0$ points.

Only parts of item 3 are additive.

