XIV International Zhautykov Olympiad in Mathematics
 Almaty, 2020

January 10, 9.00-13.30

First day
(Each problem is worth 7 points)

1. A positive integer n does not divide $2^{a} 3^{b}+1$ for any positive integers a and b. Prove that n does not divide $2^{c}+3^{d}$ for any positive integers c and d.

Solution. Assume the contrary: n divides $2^{c}+3^{d}$. Clearly n is not divisible by 3 ; therefore n divides $3^{k}-1$ for some k. Choosing s so that $k s>d$ we see that n divides $3^{k s-d}\left(2^{c}+3^{d}\right)=2^{c} 3^{k s-d}+3^{k s}$. Then n also divides $2^{c} 3^{k s-d}+1=2^{c} 3^{k s-d}+3^{k s}-\left(3^{k s}-1\right)$, a contradiction.
2. In a set of 20 elements there are $2 k+1$ different subsets of 7 elements such that each of these subsets intersects exactly k other subsets. Find the maximum k for which this is possible.

The answer is $k=2$.
Solution. Let M be the set of residues mod20. An example is given by the sets $A_{i}=\{4 i+1,4 i+$ $2,4 i+3,4 i+4,4 i+5,4 i+6,4 i+7\} \subset M, i=0,1,2,3,4$.

Let $k \geq 2$. Obviously among any three 7 -element subsets there are two intersecting subsets.
Let A be any of the $2 k+1$ subsets. It intersects k other subsets B_{1}, \ldots, B_{k}. The remaining subsets C_{1}, \ldots, C_{k} do not intersect A and are therefore pairwise intersecting. Since each C_{i} intersects k other subsets, it intersects exactly one B_{j}. This B_{j} can not be the same for all C_{i} because B_{j} can not intersect $k+1$ subsets.

Thus there are two different C_{i} intersecting different B_{j}; let C_{1} intersect B_{1} and C_{2} intersect B_{2}. All the subsets that do not intersect C_{1} must intersect each other; there is A among them, therefore they are A and all $B_{i}, i \neq 1$. Hence every B_{j} and $B_{j}, i \neq 1, j \neq 1$, intersect. Applying the same argument to C_{2} we see that any B_{i} and $B_{j}, i \neq 2, j \neq 2$, intersect. We see that the family A, B_{1}, \ldots, B_{k} contains only one pair, B_{1} and B_{2}, of non-untersecting subsets, while B_{1} intersects C_{1} and B_{2} intersects C_{2}. For each i this list contains k subsets intersecting B_{i}. It follows that no C_{i} with $i>2$ intersects any B_{j}, that is, there are no such C_{i}, and $k \leq 2$.
3. A convex hexagon $A B C D E F$ is inscribed in a circle. Prove the inequality

$$
A C \cdot B D \cdot C E \cdot D F \cdot A E \cdot B F \geq 27 A B \cdot B C \cdot C D \cdot D E \cdot E F \cdot F A
$$

Solution. Let

$$
d_{1}=A B \cdot B C \cdot C D \cdot D E \cdot E F \cdot F A, d_{2}=A C \cdot B D \cdot C E \cdot D F \cdot A E \cdot B F, d_{3}=A D \cdot B E \cdot C F
$$

Applying Ptolemy's theorem to quadrilaterals $A B C D, B C D E, C D E F, D E F A, E F A B, F A B C$, we obtain six equations $A C \cdot B D-A B \cdot C D=B C \cdot A D, \ldots, F B \cdot A C-F A \cdot B C=A B \cdot F C$. Putting these equations in the well-known inequality

$$
\sqrt[6]{\left(a_{1}-b_{1}\right)\left(a_{2}-b_{2}\right) \cdot \ldots \cdot\left(a_{6}-b_{6}\right)} \leq \sqrt[6]{a_{1} a_{2} \ldots a_{6}}-\sqrt[6]{b_{1} b_{2} \ldots b_{6}} \quad\left(a_{i} \geq b_{i}>0, i=1, \ldots, 6\right)
$$

we get

$$
\begin{equation*}
\sqrt[3]{d_{3}} \sqrt[6]{d_{1}} \leq \sqrt[3]{d_{2}}-\sqrt[3]{d_{1}} \tag{1}
\end{equation*}
$$

Applying Ptolemy's theorem to quadrilaterals $A C D F, A B D E$ и $B C E F$, we obtain three equations $A D \cdot C F=A C \cdot D F+A F \cdot C D, A D \cdot B E=B D \cdot A E+A B \cdot D E, B E \cdot C F=B F \cdot C E+B C \cdot E F$. Putting these equations in the well-known inequality

$$
\sqrt[3]{\left(a_{1}+b_{1}\right)\left(a_{2}+b_{2}\right)\left(a_{3}+b_{3}\right)} \geq \sqrt[3]{a_{1} a_{2} a_{3}}+\sqrt[3]{b_{1} b_{2} b_{3}}\left(a_{i}>0, b_{i}>0, i=1,2,3\right)
$$

we get

$$
\begin{equation*}
\sqrt[3]{d_{3}^{2}} \geq \sqrt[3]{d_{2}}+\sqrt[3]{d_{1}} \tag{2}
\end{equation*}
$$

It follows from (1) and (2) that $\left(\sqrt[3]{d_{2}}-\sqrt[3]{d_{1}}\right)^{2} \geq \sqrt[3]{d_{1}}\left(\sqrt[3]{d_{2}}+\sqrt[3]{d_{1}}\right)$, that is, $\sqrt[3]{d_{2}} \geq 3 \sqrt[3]{d_{1}}$ and $d_{2} \geq 27 d_{1}$, q.e.d.

