XV International Zhautykov Olympiad in Mathematics
 Almaty, 2019
 January 11, 9.00-13.30

№1. Prove that there are at least 100! ways to partition the number 100 ! into summands from the set $\{1!, 2!, 3!, \ldots, 99!\}$. (Partitions differing in the order of summands are considered the same; any summand can be taken multiple times. We remind that $n!=1 \cdot 2 \cdot \ldots \cdot n$.)

Solution. Let us prove by induction on $n \geqslant 4$ that there are at least n ! ways to partition the number n ! into summands from $\{1!, 2$!, $\ldots,(n-1)$! $\}$.

For $n=4$, if we use only the summands 1 !, 2 ! there are 13 ways to partition 4 ! as 2 ! can be used from 0 to 12 times. If 3 ! is used 1 time, then $4!-3!=18$ can be partitioned using 1 !, 2 ! in 10 ways. We get at least one more partition if we use 3 ! two times. So, there are at least 24 such partitions as needed.

Suppose now the statement holds for n and let us prove it for $n+1$. To partition $(n+1)$!, the summand $n!$ can be used i times for $0 \leqslant i \leqslant n$. By the hypothesis, for every such i, the remaining number $(n+1)$! -$-i \cdot n!=(n+1-i) \cdot n!$ can be partitioned into the summands $\{1!, \ldots,(n-1)!\}$ in at least $n!$ ways as follows. For any partition of $n!$ take each summand appearing say k times and write it $(n+1-i) k$ times. Hence we obtain at least $(n+1) \cdot n!=(n+1)$! ways to partition the number $(n+1)$! as desired. The original problem follows for $n=100$ then.
№2. Find the largest real C such that for all pairwise distinct positive real $a_{1}, a_{2}, \ldots, a_{2019}$ the following inequality holds

$$
\frac{a_{1}}{\left|a_{2}-a_{3}\right|}+\frac{a_{2}}{\left|a_{3}-a_{4}\right|}+\ldots+\frac{a_{2018}}{\left|a_{2019}-a_{1}\right|}+\frac{a_{2019}}{\left|a_{1}-a_{2}\right|}>C .
$$

2. The answer is 1010 .

Solution. Without loss of generality we assume that $\min \left(a_{1}, a_{2}, \ldots, a_{2019}\right)=a_{1}$. Note that if a, b, c $(b \neq c)$ are positive, then $\frac{a}{|b-c|}>\min \left(\frac{a}{b}, \frac{a}{c}\right)$. Hence

$$
S=\frac{a_{1}}{\left|a_{2}-a_{3}\right|}+\cdots+\frac{a_{2019}}{\left|a_{1}-a_{2}\right|}>0+\min \left(\frac{a_{2}}{a_{3}}, \frac{a_{2}}{a_{4}}\right)+\cdots+\min \left(\frac{a_{2017}}{a_{2018}}, \frac{a_{2017}}{a_{2019}}\right)+\frac{a_{2018}}{a_{2019}}+\frac{a_{2019}}{a_{2}}=T .
$$

Take $i_{0}=2$ and for each $\ell \geqslant 0$ let $i_{\ell+1}=i_{\ell}+1$ if $a_{i_{\ell}+1}>a_{i_{\ell}+2}$ and $i_{\ell+1}=i_{\ell}+2$ otherwise. There is an integral k such that $i_{k}<2018$ and $i_{k+1} \geqslant 2018$. Then

$$
\begin{equation*}
T \geqslant \frac{a_{2}}{a_{i_{1}}}+\frac{a_{i_{1}}}{a_{i_{2}}}+\cdots+\frac{a_{i_{k}}}{a_{i_{k+1}}}+\frac{a_{2018}}{a_{2019}}+\frac{a_{2019}}{a_{2}}=A . \tag{1}
\end{equation*}
$$

We have $1 \leqslant i_{\ell+1}-i_{\ell} \leqslant 2$, therefore $i_{k+1} \in\{2018,2019\}$.
Since

$$
\begin{equation*}
2018 \leqslant i_{k+1}=i_{0}+\left(i_{1}-i_{0}\right)+\cdots+\left(i_{k+1}-i_{k}\right) \leqslant 2(k+2) \tag{2}
\end{equation*}
$$

it follows that $k \geqslant 1007$. Consider two cases.
(i) $k=1007$. Then in the inequality (2) we have equalities everywhere, in particular $i_{k+1}=2018$. Applying AM-GM inequality for $k+3$ numbers to (1) we obtain $A \geqslant k+3 \geqslant 1010$.
(ii) $k \geqslant 1008$. If $i_{k+1}=2018$ then we get $A \geqslant k+3 \geqslant 1011$ by the same argument as in the case (i). If $i_{k+1}=2019$ then applying AM-GM inequality to $k+2$ summands in (1) (that is, to all the summands except $\frac{a_{2018}}{a_{2019}}$) we get $A \geqslant k+2 \geqslant 1010$.

So we have $S>T \geqslant A \geqslant 1010$. For $a_{1}=1+\varepsilon, a_{2}=\varepsilon, a_{3}=1+2 \varepsilon, a_{4}=2 \varepsilon, \ldots, a_{2016}=1008 \varepsilon, a_{2017}=$ $=1+1009 \varepsilon, a_{2018}=\varepsilon^{2}, a_{2019}=1$ we obtain $S=1009+1008 \varepsilon+\frac{1008 \varepsilon}{1+1009 \varepsilon-\varepsilon^{2}}+\frac{1+1009 \varepsilon}{1-\varepsilon^{2}}$. Then $\lim _{\varepsilon \rightarrow 0} S=1010$, which means that the constant 1010 cannot be increased.
$№ 3$. The extension of median $C M$ of the triangle $A B C$ intersects its circumcircle ω at N. Let P and Q be the points on the rays $C A$ and $C B$ respectively such that $P M \| B N$ and $Q M \| A N$. Let X and Y be the points on the segments $P M$ and $Q M$ respectively such that $P Y$ and $Q X$ are tangent to ω. The segments $P Y$ and $Q X$ intersect at Z. Prove that the quadrilateral $M X Z Y$ is circumscribed.

Solution.

Lemma. The points K and L lie on the sides $B C$ and $A C$ of a triangle $A B C$. The segments $A K$ and $B L$ intersect at D. Then the quadrilateral $C K D L$ is circumscribed if and only if $A C-B C=A D-B D$.

Proof. Let $C K D L$ be circumscribed and its incircle touches $L C, C K, K D, D L$ at X, Y, Z, T respectively (see Fig. 1). Then

$$
A C-B C=A X-B Y=A Z-B T=A D-B D
$$

Рис. 1

Рис. 2

Now suppose that $A C-B C=A D-B D$. Let the tangent to the incircle of $B L C$ different from $A C$ meets the segments $B L$ and $B C$ at D_{1} and K_{1} respectively. If $K=K_{1}$ then the lemma is proved. Otherwise $A D_{1}-B D_{1}=A C-B C=A D-B D$ or $A D_{1}-B D_{1}=A D-B D$. In the case when D lies on the segment $B D_{1}$ (see Fig. 2) we have

$$
A D_{1}-B D_{1}=A D-B D \Rightarrow A D_{1}-A D=B D_{1}-B D \Rightarrow A D_{1}-A D=D D_{1}
$$

But the last equation contradicts the triangle inequality, since $A D_{1}-A D<D D_{1}$. The case when D is outside the segment $B D_{1}$ is similar.

Back to the solution of the problem, let $P Y$ and $Q X$ touch ω at Y_{1} and X_{1} respectively. Since $A C B N$ is cyclic and $P M \| B N$ we have $\angle A C N=\angle A B N=\angle A M P$, i. e. the circumcircle of $\triangle A M C$ is tangent to the line $P M$. Thus $P M^{2}=P A \cdot P C$. But $P A \cdot P C=P Y_{1}^{2}$, and therefore $P M=P Y_{1}$. In the same way we have $Q M=Q X_{1}$. Obviously $Z X_{1}=Z Y_{1}$. It remains to note that the desired result follows from the Lemma because
$P M-Q M=P Y_{1}-Q X_{1}=\left(P Z+Z Y_{1}\right)-\left(Q Z+Z X_{1}\right)=P Z-Q Z \quad \Rightarrow \quad P M-Q M=P Z-Q Z$.

Рис. 3

Note. This solution does not use the comdition that M is the midpoint of $A B$.

