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SOLUTIONS TO THE PROBLEMS OF THE THEORETICAL 

COMPETITION 
Attention. Points in grading are not divided! 

Problem 1 (10.0 points) 
Problem 1A (4.0 points) 

Since the thread is inextensible and under stress, then the speed of the puck is always 

perpendicular to the thread. Therefore, the tension force of the thread does not perform any work on 

the puck and its speed remains constant by modulus 

 𝑣 = 𝑐𝑜𝑛𝑠𝑡.          (1) 

The puck moves along its trajectory with the curvature radius equal to the length 𝑙 of the 

unwound thread, therefore, the condition for the thread to be torn up is found from Newton's second 

law as 

𝑇 = 𝑚
𝑣2

𝑙
.          (2) 

The length of the thread changes as a result of winding on the cylinder according to 

𝑑𝑙 = −𝑅𝑑𝛼,          (3) 

where 

𝑑𝛼 = 𝜔𝑑𝑡,          (4) 

and the angular velocity of the thread rotation is obtained as follows 

𝜔 =
𝑣

𝑙
.           (5) 

It follows from equations (3)-(5) that 

𝑙𝑑𝑙 = −𝑅𝑣𝑑𝑡,          (6) 

and its integration entails 

𝑙2 − 𝑙0
2 = −2𝑅𝑣𝑡.         (7) 

Substituting formula (1) into (7), the time moment sought is finally found as 

𝑡 =
𝑙0
2−(

𝑚𝑣2

𝑇
)
2

2𝑅𝑣
=

𝑙0
2𝑇2−𝑚2𝑣4

2𝑅𝑣𝑇2 .        (8) 

 

Content Points 

The puck speed remains unchanged 1 

𝑇 = 𝑚
𝑣2

𝑙
 0.5 

𝑙𝑑𝑙 = −𝑅𝑣𝑑𝑡 1 

𝑙2 − 𝑙0
2 = −2𝑅𝑣𝑡 0.5 

𝑡 =
𝑙0
2𝑇2 − 𝑚2𝑣4

2𝑅𝑣𝑇2
 1 

Total 4.0 

 
Problem 1В (3.0 points) 

Possible solution. The power of the heat transfer from the body to the air is proportional to 

the difference between the body T  and the air xT  temperatures with the factor  , i.e. 

( )xP T T= − ,         (1) 

as a result, the body with the heat capacity С  cools down by the temperature dT  over time period 

dt , which obeys the heat balance equation 

CdT Pdt= − .          (2) 

Equations (1) and (2) with the initial condition 0T T=  have a solution 

0( ) ( ) t

x xT t T T T e −= + − ,        (3) 

where / C =  is a constant. 
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Let the body be cooled from the temperature 
0T  to the temperature 

1T  for a certain time 

interval, then it follows from (3) that 

( ) ( )1 0 0 xT T T T− = − ,        (4) 

where   is a constant.  

Over the following same time interval, this difference will also change in   times 

( ) ( )2 1 1 xT T T T− = − .         (5) 

Equations (4) and (5) result in the relation 

( )

( )

( )

( )
0 1

1 0 2 0

x xT T T T

T T T T

− −
=

− −
,         (6) 

which has the following solution 

( )

2

0 2 1

0 2 12
x

T T T
T

T T T

−
=

+ −
.         (7)  

It is obtained from the graph provided: the initial temperature 0 373KT = , in 10 minutes the 

temperature is equal to 1 337T K= , and in 20 minutes it reaches the value of 2 319T K= . 

Substituting these data into equation (7), the air temperature is finally calculated as 

301 28xT K C= =  .         (8) 

 
Content Points 

Correct method for determining the air temperature  1.5 

The air temperature lies in the interval 27.5 28.5 CxT = −    1.5 

The air temperature lies in the interval 27.0 29.0 CxT = −    (1.0) 

The air temperature lies in the interval 26.5 29.5 CxT = −    (0.5) 

Out of the above intervals 0 

Total 3.0 

 
Problem 1С (3.0 points) 

Let 𝑅 be the active component of the load (the real part of the impedance), and 𝑋 be the 

reactive component of the entire circuit (the imaginary part of the total impedance). Then the 

current amplitude is found as 

𝐼 =
𝑈

√(𝑟+𝑅)2+𝑋2
. 

The average thermal power in the load reads as 

𝑃 =
1

2
𝐼2𝑅 =

𝑈2𝑅

2[(𝑟+𝑅)2+𝑋2]
. 

It is seen that the maximum power is achieved at X = 0, i.e. there should be no phase shift in 

the circuit. The remaining expression has a maximum at R = r. 

The phase shift would be zero if a coil was connected in series with the 

capacitor such that 
1

𝜔𝐶
= 𝜔𝐿, and, thus, 𝐿 =

1

𝜔2𝐶
= 1.00 ∙ 10−2 𝐻𝑛. 

It turns out that the simplest load must consist of the resistor with the resistance 

of 2019 Ohms and the coil with the inductance of 1.00 ∙ 10−2 𝐻𝑛. 

The maximum power is obtained as 

𝑃𝑚𝑎𝑥 =
1

2

𝑈2

4𝑟
=

𝑈2

8𝑟
= 13.9 mW. 

 

Content Points 

The phase shift is zero 1 



V International Zhautykov Olympiad/Theoretical Competition                                                Page 3/12 

Without justification (0,5) 

The inductance of the coil 𝐿 =
1

𝜔2𝐶
 0,7 

Correct numerical value 𝐿 = 10−2 Hn 0,3 

Maximum power at R = r 0,5 

The maximum power itself 𝑃𝑚𝑎𝑥 =
𝑈2

8𝑟
 0,3 

Correct numerical value 𝑃𝑚𝑎𝑥 = 14 mW 0,2 

Total 3,0 

 

Problem 2. Conductors in an electric field (10,0 points) 
Conductive ball and point charge  

2.1 The electric potential of the point-like charge 𝑞 is equal to  

𝜑1 =
𝑞

4𝜋𝜀0√(𝑙−𝑥)2+𝑦2
,        (1) 

whereas the electric potential of the fictitious point-like charge 𝑄 is found to be 

𝜑2 =
𝑄

4𝜋𝜀0√(𝑥−𝑎)2+𝑦2
.        (2) 

According to the principle of superposition, the full potential is just a sum of equations (1) and (2) 

𝜑 = 𝜑1 + 𝜑2 =
𝑞

4𝜋𝜀0√(𝑙−𝑥)2+𝑦2
+

𝑄

4𝜋𝜀0√(𝑥−𝑎)2+𝑦2
.    (3) 

2.2 The equation of the circle corresponding to the surface of the ball is written as 

𝑥2 + 𝑦2 = 𝑅2.        (4) 

Eliminating 𝑦 with the help of relation (4) and substituting it into formula (3) yield 

𝜑 =
𝑞

4𝜋𝜀0√𝑙2−2𝑙𝑥+𝑅2
+

𝑄

4𝜋𝜀0√𝑎2−2𝑎𝑥+𝑅2
.     (5) 

2.3 The potential of the ball is zero, since it is grounded, i.e. 

𝜑 = 0.          (6) 

Equating expression (5) to zero, it can be rewritten in the form 
𝑄

𝑞
= −

√𝑎2−2𝑎𝑥+𝑅2

√𝑙2−2𝑙𝑥+𝑅2
= 𝛽 = 𝑐𝑜𝑛𝑠𝑡 < 0.     (7) 

Raising equation (7) in the square, one gets the following equation 

2𝑥(𝑙𝛽2 − 𝑎) + 𝑎2 + 𝑅2 − 𝛽2(𝑙2 + 𝑅2) = 0.    (8) 

Equation (8) should be satisfied for all 𝑥 ∈ (−𝑅, 𝑅), and this is possible only if the 

coefficient at the linear term 𝑥 and the free term are separately equal to zero, i.e. 

𝑙𝛽2 − 𝑎 = 0,         (9) 

𝑎2 + 𝑅2 − 𝛽2(𝑙2 + 𝑅2) = 0.       (10) 

Solving the set of equations (9) and (10), the following two solutions are obtained 

𝑎 = 𝑙,    𝛽 = −1,        (11) 

𝑎 =
𝑅2

𝑙
,    𝛽 = −

𝑅

𝑙
.        (12) 

Only solution (12) is nonzero, so we finally get 

𝑄 = −𝑞
𝑅

𝑙
,         (13) 

𝑎 =
𝑅2

𝑙
.         (14) 

2.4 The force acting on the point-like charge reads as 

𝐹 =
𝑞2𝑅𝑙

4𝜋𝜀0(𝑙2−𝑅2)2
,        (15) 

and, therefore, the work sought is found by integrating as 

𝐴 = ∫ 𝐹𝑑𝑙
∞

𝑙
=

𝑞2𝑅

8𝜋𝜀0(𝑙2−𝑅2)
.       (16) 

2.5 Let the point-like charge be slowly moved from the initial position to infinity such that the 

resulting current strength in the ball is negligibly small and the release of Joule heat can be omitted. 

Let 𝑊𝑞 be the energy of the point-like charge 𝑞, 𝑊𝑄 be the sought interaction energy of induced 
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charges, 𝑊𝑄𝑞 be the interaction energy of the point charge 𝑞 with the induced charges, which is 

simply obtained as 

𝑊𝑄𝑞 = −
𝑞2𝑅

4𝜋𝜀0(𝑙2−𝑅2)
.        (17) 

When the charge is removed to infinity, the law of energy conservation must be satisfied, 

which in this case has the form 

𝑊𝑞 + 𝑊𝑄 + 𝑊𝑄𝑞 + 𝐴 = 𝑊𝑞.       (18) 

The set of equations (16)-(18) finally provides the following result 

𝑊𝑄 =
𝑞2𝑅

8𝜋𝜀0(𝑙2−𝑅2)
.        (19) 

Conductive ball in a uniform electric field  

2.6 To find the electric field inside a uniformly charged ball, the Gauss theorem is written for a 

spherical volume of radius 𝑟 < 𝑅. The charge inside this volume is easily derived as 

𝑞 =
4

3
𝜋𝑟3𝜌,         (20) 

and the electric field flux is found to be 

Ф𝐸 = 4𝜋𝑟2𝐸.         (21) 

According to the Gauss theorem 

Ф𝐸 =
𝑞

𝜀0
,         (22) 

which ultimately entails 

𝐸⃗ =
𝜌

3𝜀0
𝑟 .         (23) 

The last expression takes into account that the electric field strength vector is collinear to the vector 

𝑟 . 
2.7 Now consider the two fictitious balls with the bulk charge densities of opposite signs and 

evaluate the electric field in the domain of their intersection. Take an arbitrary point inside this 

domain and draw the radii of the vectors from the centers of the balls, denoting them 𝑟+⃗⃗  ⃗ and 𝑟−⃗⃗  ⃗, 
respectively. Then, applying formula (23) for each ball results in 

𝐸+
⃗⃗ ⃗⃗  =

𝜌

3𝜀0
𝑟+⃗⃗  ⃗,         (24) 

𝐸−
⃗⃗ ⃗⃗  = −

𝜌

3𝜀0
𝑟−⃗⃗  ⃗.         (25) 

The net electric field is found with the help of the superposition principle as 

𝐸⃗ =
𝜌

3𝜀0
(𝑟+⃗⃗  ⃗ − 𝑟−⃗⃗  ⃗) =

𝜌

3𝜀0
𝑎 ,       (26) 

where 𝑎  stands for the vector, drawn from the center of the negatively charged ball to the center of 

the positively charged ball. 

2.8 The field strength inside the conducting ball must be zero. The induced charges create, 

according to formula (26), a uniform electric field, which must completely compensate for the 

external electric field, whence we obtain that 

𝜌𝑎 = 3𝜀0𝐸0.         (27) 

The charges of the fictitious balls are fully compensated with the exception of a thin layer 

near their surfaces, which can be considered a surface charge. The layer thickness 𝛿 depends on the 

angle 𝜃 and, due to the smallness of 𝑎, is equal to 

𝛿 = 𝑎 cos 𝜃.         (28) 

Hence, the magnitude of the surface charge near the angle 𝜃 is equal to 

𝜎 =
𝜌𝑉

𝑆
=

𝜌𝑆𝛿

𝑆
= 𝜌𝛿.        (29) 

It immediately follows from equations (27)-(29) that 

𝜎 = 3𝜀0𝐸0 cos 𝜃.        (30) 

2.9 Consider a thin cylinder near the surface of the conductor and apply the Gauss theorem to it. 

Since the field inside the conductor is absent, and is directed normally just outside of it, then 

according to the Gauss theorem 
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𝐸𝑆 =
𝜎𝑆

𝜀0
,         (31) 

which yields 

𝐸 = 3𝐸0 cos 𝜃.        (32) 

Conductive ball and charged ring 

2.10 The conducting ball is very small, so that the electric field of the ring 𝐸 in its vicinity can be 

considered almost uniform. It has been shown in the previous part of this problem that its 

polarization can be represented as two fictitious balls of opposite charge. These two balls behave in 

an external field as a dipole with the moment 

𝑝 = 𝑞𝑎 ,         (33) 

where 

𝑞 = 𝜌
4

3
𝜋𝑟3.         (34) 

Using (27), formulas (33) and (34) produce 

𝑝 = 4𝜋𝑟3𝜀0𝐸⃗ ,         (35) 

Let us evaluate the electric field of the ring 𝐸 in the vicinity of the ball as a function of its 

distance 𝑧 to the center. Obviously, the ring field is directed along the needle. Dividing the ring into 

small parts that carry an electric charge ∆𝑞𝑖 the projection of their field on the direction of the 

needle has the form 

∆𝐸𝑧 =
∆𝑞𝑖 cos𝛼

4𝜋𝜀0(𝑧2+𝑅2)2
.        (36) 

Taking into account 

cos 𝛼 =
𝑧

(𝑧2+𝑅2)1/2        (37) 

and summing over all elements of the ring, one gets 

𝐸(𝑧) =
𝑞𝑧

4𝜋𝜀0(𝑧2+𝑅2)3/2.       (38) 

The force acting on the dipole is obtained as 

𝐹 = 𝑞𝐸(𝑧 + 𝑎) − 𝑞𝐸(𝑧) = 𝑞𝑎
𝑑𝐸

𝑑𝑧
= 𝑝

𝑑𝐸

𝑑𝑧
.     (39) 

Substituting formulas (35) and (38) into (39) gives rise to 

𝐹 =
𝑞2𝑟3𝑧(𝑅2−2𝑧2)

4𝜋𝜀0(𝑧2+𝑅2)4
.        (40) 

It follows from expression (40) that there are three equilibrium positions, which are 

determined by the points 

𝑧1 = 0,         (41) 

𝑧2,3 = ±
𝑅

√2
.         (42) 

A simple analysis proves that the equilibrium position (41) is unstable, and the symmetric 

positions (42) are both stable. 

Near the position of the stable equilibrium, expression (40) for the force simplifies to 

 𝐹 = −
8𝑞2𝑟3𝑥

81𝜋𝜀0𝑅6
,        (43) 

where 

𝑥 = 𝑧 −
𝑅

√2
≪ 𝑅.        (44) 

Newton's equation for the motion of the ball along the needle at small deviations 𝑥 has the 

form 

𝑚𝑥̈ +
8𝑞2𝑟3

81𝜋𝜀0𝑅6 𝑥 = 0,        (45) 

which is a harmonic equation with the frequency 

𝜔 = √
8𝑞2𝑟3

81𝜋𝜀0𝑚𝑅6.        (46) 

2.11 There is no need to integrate formula (40). In the initial position, the conducting ball is not 

polarized and in the final state it is also not polarized, since at zero and at infinity separations the 
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electric field of the ring vanishes. Therefore, it is immediately inferred from the law of energy 

conservation that  

𝐴 = 0.          (47) 

It is natural that integrating expression (40) from zero to infinity gives the same answer. 

 

Part Content Points  

2.1 

Formula (1) 𝜑1 =
𝑞

4𝜋𝜀0√(𝑙−𝑥)2+𝑦2
 0,2 

0,6 Formula (2) 𝜑2 =
𝑄

4𝜋𝜀0√(𝑥−𝑎)2+𝑦2
 0,2 

Formula (3) 𝜑 = 𝜑1 + 𝜑2 =
𝑞

4𝜋𝜀0√(𝑙−𝑥)2+𝑦2
+

𝑄

4𝜋𝜀0√(𝑥−𝑎)2+𝑦2
 0,2 

2.2 
Formula (4) 𝑥2 + 𝑦2 = 𝑅2 0,2 

0,4 
Formula (5) 𝜑 =

𝑞

4𝜋𝜀0√𝑙2−2𝑙𝑥+𝑅2
+

𝑄

4𝜋𝜀0√𝑎2−2𝑎𝑥+𝑅2
 0,2 

2.3 

Formula (6) 𝜑 = 0 0,2 

1,8 

Formula (7) 
𝑄

𝑞
= −

√𝑎2−2𝑎𝑥+𝑅2

√𝑙2−2𝑙𝑥+𝑅2
= 𝛽 = 𝑐𝑜𝑛𝑠𝑡 < 0 0,2 

Formula (8) 2𝑥(𝑙𝛽2 − 𝑎) + 𝑎2 + 𝑅2 − 𝛽2(𝑙2 + 𝑅2) = 0 0,2 

Formula (9) 𝑙𝛽2 − 𝑎 = 0 0,2 

Formula (10) 𝑎2 + 𝑅2 − 𝛽2(𝑙2 + 𝑅2) = 0 0,2 

Formula (11) 𝑎 = 𝑙,    𝛽 = −1 0,2 

Formula (12) 𝑎 =
𝑅2

𝑙
,    𝛽 = −

𝑅

𝑙
 0,2 

Formula (13) 𝑄 = −𝑞
𝑅

𝑙
 0,2 

Formula (14) 𝑎 =
𝑅2

𝑙
 0,2 

2.4 
Formula (15) 𝐹 =

𝑞2𝑅𝑙

4𝜋𝜀0(𝑙2−𝑅2)2
 0,2 

0,4 
Formula (16) 𝐴 = ∫ 𝐹𝑑𝑙

∞

𝑙
=

𝑞2𝑅

8𝜋𝜀0(𝑙2−𝑅2)
 0,2 

2.5 

Formula (17) 𝑊𝑄𝑞 = −
𝑞2𝑅

4𝜋𝜀0(𝑙2−𝑅2)
 0,2 

0,6 Formula (18) 𝑊𝑞 + 𝑊𝑄 + 𝑊𝑄𝑞 + 𝐴 = 𝑊𝑞 0,1 

Formula (19) 𝑊𝑄 =
𝑞2𝑅

8𝜋𝜀0(𝑙2−𝑅2)
 0,3 

2.6 

Formula (20) 𝑞 =
4

3
𝜋𝑟3𝜌 0,1 

0,4 
Formula (21) Ф𝐸 = 4𝜋𝑟2𝐸 0,1 

Formula (22) Ф𝐸 =
𝑞

𝜀0
 0,1 

Formula (23) 𝐸⃗ =
𝜌

3𝜀0
𝑟  0,1 

2.7 

Formula (24) 𝐸+
⃗⃗ ⃗⃗  =

𝜌

3𝜀0
𝑟+⃗⃗  ⃗ 0,1 

0,4 Formula (25) 𝐸−
⃗⃗ ⃗⃗  = −

𝜌

3𝜀0
𝑟−⃗⃗  ⃗ 0,1 

Formula (26) 𝐸⃗ =
𝜌

3𝜀0
(𝑟+⃗⃗  ⃗ − 𝑟−⃗⃗  ⃗) =

𝜌

3𝜀0
𝑎  0,2 

2.8 

Formula (27) 𝜌𝑎 = 3𝜀0𝐸0 0,2 

0,8 
Formula (28) 𝛿 = 𝑎 cos 𝜃 0,2 

Formula (29) 𝜎 =
𝜌𝑉

𝑆
=

𝜌𝑆𝛿

𝑆
= 𝜌𝛿 0,2 

Formula (30) 𝜎 = 3𝜀0𝐸0 cos 𝜃 0,2 

2.9 Formula (31) 𝐸𝑆 =
𝜎𝑆

𝜀0
 0,2 0,4 
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Formula (32) 𝐸 = 3𝐸0 cos 𝜃 0,2 

2.10 

Formula (33) 𝑝 = 𝑞𝑎  0,4 

3,8 

Formula (34) 𝑞 = 𝜌
4

3
𝜋𝑟3 0,2 

Formula (35) 𝑝 = 4𝜋𝑟3𝜀0𝐸⃗  0,4 

Formula (36) ∆𝐸𝑧 =
∆𝑞𝑖 cos𝛼

4𝜋𝜀0(𝑧2+𝑅2)2
 0,2 

Formula (37) cos 𝛼 =
𝑧

(𝑧2+𝑅2)1/2 0,2 

Formula (38) 𝐸(𝑧) =
𝑞𝑧

4𝜋𝜀0(𝑧2+𝑅2)3/2
 0,4 

Formula (39) 𝐹 = 𝑞𝐸(𝑧 + 𝑎) − 𝑞𝐸(𝑧) = 𝑞𝑎
𝑑𝐸

𝑑𝑧
= 𝑝

𝑑𝐸

𝑑𝑧
 0,4 

Formula (40) 𝐹 =
𝑞2𝑟3𝑧(𝑅2−2𝑧2)

4𝜋𝜀0(𝑧2+𝑅2)4
 0,2 

Formula (41) 𝑧1 = 0 0,2 

Formula (42) 𝑧2,3 = ±
𝑅

√2
 0,2 

Formula (43) 𝐹 = −
8𝑞2𝑟3𝑥

81𝜋𝜀0𝑅6 0,4 

Formula (44) 𝑥 = 𝑧 −
𝑅

√2
≪ 𝑅. 0,2 

Formula (45) 𝑥̈ +
8𝑞2𝑟3

81𝜋𝜀0𝑅6 𝑥 = 0 0,2 

Formula (46) 𝜔 = √
8𝑞2𝑟3

81𝜋𝜀0𝑚𝑅6 0,2 

2.11 
Formula (47) 𝐴 = 0 0.4 

0,4 
Formal integral of formula (40) without the correct answer (0.1) 

Total   10,0 

 

Problem 3. Laser (10.0 points) 
Population inversion: two-level system 

3.1 The figure on the right shows a diagram of possible transitions and their 

probabilities. If the population of the excited state is equal to 1n , then the 

population of the ground state is equal to ( )11 n− , since the molecule can only 

be in one of two states. 

The balance equation describing the change in the population directly 

follows from the drawn diagram as 

( )1
1 0 1 0 1

1
1

dn
n I n I n

dt
 


= − − + − .       (1) 

3.2 In the stationary mode 1 / 0dn dt = , then it follows from equation (1) that the population of the 

excited state is given by the formula 





0

0
1

21 I

I
n

+
= .         (2) 

Accordingly, the difference in the populations of the excited and ground states is equal to 

( )




00

0
11

21

1
1

21
21

II

I
nnn

+
−=−

+
=−−= .     (3) 

3.3 Even with the intensity of the pumping light flux tending to infinity, the population inversion in 

the two-level system cannot be achieved, therefore, the laser light flux cannot be amplified in this 

system. 
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Population inversion: three-level system 

3.4 In this system, there are no forced transitions "down", so the balance equation 

for the population of state 2 is written as: 

( )2 2
0 21

dn n
I n

dt



= − + − .     (4) 

Here, it is taken into account that the molecule can only be in two states: the 

excited state 2, or the ground state 0. 

3.5 In the stationary mode 2 / 0dn dt = , therefore, as it follows from equation (4), 

the population of the excited state is derived as 

 









0

0

0

0
2

11 I

I

I

I
n

+
=

+

= .        (5) 

The difference between the populations of the excited and ground states is found by the 

formula 

( )




0

0
2202

1

1
1

I

I
nnnnn

+

−
=−−=−= .      (6) 

3.6 Laser light amplification is possible when the population inversion is reached, i.e. 0n . It 

follows from formula (6) that this is possible when 

10 I .          (7) 

Population inversion: four-level system 

3.7 In the four-level system, the balance equation for the population of state 2 

coincides with equation (4), and the stationary value of the population of this state 

is also described by formula (5). The essential difference of this system is that from 

state 2 the transition is undertaken to intermediate state 3, whose population is 

practically equal to 0. Therefore, in this system the population difference is equal to 





0

0
2

1 I

I
nn

+
== ,      (8) 

and the population inversion between states 2 and 3 is achieved with practically arbitrary value of 

the parameter 

00 I .          (9) 

Resonator 

3.8 The change in the number dN  of photons in the resonator is due only to their output through 

the translucent mirror. For a short period of time dt , the number of photons that leave the resonator 

through the mirror is found to be  

( )1out GdN I Sdt dN= − = − .        (10) 

where S  stands for the cross section area of the resonator. 

The intensity of the laser light flux GI  can be expressed in terms of the average density of 

photons 
Sl

N
 in the resonator and the speed of their propagation 

r

c
 in the form 

r

c

Sl

N
IG

2

1
= .          (11) 

The factor 1/ 2  takes into account that the laser light in the resonator propagates in two 

opposite directions. Expressing the number of photons in the resonator through the intensity of the 

generation flux 

GI
c

rSl
N

2
=           (12) 
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and substituting it into equation (10), one gets 

( ) ( )1 1
2 2

G G G

c c
dI I Sdt I dt

rSl rl
 = − − = − − .     (13) 

This equation has the required form 

( )
GG

G I
T

I
rl

c

dt

dI 1

2

1
−=

−
−=


,       (14) 

where the photon lifetime in the resonator is determined by the formula 

( )
92

3,00 10
1

rl
T s

c 

−= = 
−

.        (15) 

3.9 Consider the change in the number of photons in the presence of the stimulated emission and 

the absence of losses through the mirror. In accordance with the definition of the stimulated 

emission cross section, the number of generated photons can be described by the equation   

SldtnIVdtnIdN EGEG  22 == .       (16) 

Here 𝑛𝛾𝑉 denotes the number of dye molecules in the resonator being in the excited state, and 

SlV =  is the resonator volume.  

Substituting the expression for the number of photons in the resonator (12) into the last 

equation, the desired equation is finally obtained 

G E
G G

dI c
nI KnI

dt r

 
= = ,        (17) 

with the resonator gain 

10 15,72 10Ec
K s

r

  −= =  .        (18) 

Stationary generation mode 

3.10 To describe the dynamics of the intensity of the laser light flux, it is necessary to combine 

equations (14) and (17): 

1G
G G

dI
KnI I

dt T
= − .         (19) 

The population of the excited state is described by the balance equation 

( ) nInnI
dt

dn
EGA 


 2

1
10 −−−= ,       (20) 

which takes into account the absorption of the pumping light flux, spontaneous and stimulated 

emissions from the excited state. 

3.11 To initiate the laser light amplification, it is necessary that the derivative in equation (19) 

should be greater than zero, therefore the threshold value of the population of the excited state is 

equal to 

31
5,83 10 1thn

KT

−= =  .        (21) 

3.12 To derive the threshold value of the intensity of the pumping light flux, we make use of 

equation (20) in the absence of the laser light flux 0GI = , whence we get 

( )
21 2 1

0, 3,58 10
1

th th
th

A th A

n n
I cm s

n 

− −=  =  
−

.     (22) 

To find the pumping energy flux, the calculated flux (22) must be multiplied by the energy 

of one quantum 

193,83 10
hc

J


−= =  ,        (23) 

therefore, the pumping energy intensity is obtained as 
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3

0, 2
1,37 10E th

W
I I

cm
= =  .        (24) 

3.13 In the stationary mode, the time derivatives in equations (19) and (20) vanish. Equation (19) 

then yields 

KT
n

1
= ,          (25) 

and it is found from equation (20) that  

n

nI

I
E

A

G





2

1
0 −

= .         (26) 

Expressing the intensity of the pumping light flux through its threshold value 

0 0,th

A

n
I I 


= =          (27) 

and substituting it into formula (23), one obtains 

1

1

2 2

A

A
G

E E

n
n

I
n

 
  

 

−
−

= = .        (28) 

At the output of the resonator, the laser light intensity is equal to 

( )
( )

( )
1

1 ( 1) 1
2

G

E

I I E


  


−
= − = − = − ,      (29) 

in which the constant factor is introduced as 

22 2 11
5,41 10

2 E

E cm s




− −−
= =   .       (30) 

The graph of relation (29) is a straight line, as shown in the figure below. 

 
3.14 On the one hand, the number of light quanta absorbed in the resonator per unit time is 

calculated by the formula 

0,A th AN I Sl  = .         (31) 

On the other hand, the number of quanta leaving the resonator per unit time is 

( )SENE 1−=  .           (32) 

Thus, the quantum output turns out to be equal 

( )
( ) ( )lI

E

N

N
f

AtrA

E





0

1−
== .        (33) 

The substitution of all parameters included in this formula leads to the final result 



 1−
=f .          (34) 
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Part Content Points  

3.1 Equation (1): ( )1
1 0 1 0 1

1
1

dn
n I n I n

dt
 


= − − + −  0,3 0,3 

3.2 

Formula (2): 




0

0
1

21 I

I
n

+
=  0,2 

0,3 

Formula (3): ( )




00

0
11

21

1
1

21
21

II

I
nnn

+
−=−

+
=−−=  0,1 

3.3 Answer: «no»  0,2 0,2 

3.4 Equation (4): ( )2 2
0 21

dn n
I n

dt



= − + −  0,2 0,2 

3.5 

Formula (5): 









0

0

0

0
2

11 I

I

I

I
n

+
=

+

=  
0,1 

0,2 

Formula (6): ( )




0

0
2202

1

1
1

I

I
nnnnn

+

−
=−−=−=  0,1 

3.6 Inequality (7): 10 I  0,3 0,3 

3.7 

Formula (5) is again used 0,1 

0,5 Formula (8): 




0

0
2

1 I

I
nn

+
==  0,1 

Inequality (9): 00 I  0,3 

3.8 

Formula (10): ( )1out GdN I Sdt dN= − = −  0,3 

1,5 

Formula (11): 
r

c

Sl

N
IG

2

1
=  0,5 

Formula (15): 
( )
2

1

rl
T

c 
=

−
 0,4 

Numerical value: 93,00 10T s−=   0,3 

3.9 

Formula (16): SldtnIVdtnIdN EGEG  22 ==  0,6 

1,5 Formula (18): Ec
K

r

 
=  0,5 

Numerical value: 10 15,72 10K s−=   0,4 

3.10 

Equation (19): 
1G

G G

dI
KnI I

dt T
= −  0,2 

0,5 

Equation (20): ( ) nInnI
dt

dn
EGA 


 2

1
10 −−−=  0,3 

3.11 

Derivative should be positive; 0,1 

0,5 Formula (21): 
1

thn
KT

=  0,2 

Numerical value: 35,83 10thn −=   0,2 

3.12 The intensity of the laser light flux: 0GI =  0,1 1,0 
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Formula (22): 
( )0,
1

th th
th

A th A

n n
I

n 
= 

−
 0,3 

Numerical value: 21 2 1

0, 3,58 10thI cm s− −=    0,3 

Formula (23): 
hc




=  0,1 

Formula (24): 0,E thI I=  0,1 

Numerical value: 
3

2
1,37 10E

W
I

cm
=   0,1 

3.13 

Derivatives turn zero  0,1 

2,0 

Formula (25): 
KT

n
1

=  0,2 

Formula (26): 
n

nI

I
E

A

G





2

1
0 −

=  0,2 

Formula (27): 
0 0,th

A

n
I I 


= =  0,2 

Formula (28): 

1

1

2 2

A

A
G

E E

n
n

I
n

 
  

 

−
−

= =  
0,3 

Formula (30): 
1

2 E

E




−
=  0,2 

Numerical value: 22 2 15,41 10E см с− −=    0,3 

Drawing graph: axis are named and ticked 0,1 

Drawing graph: straight line 0,2 

Drawing graph: straight line passes through 1 0,2 

3.14 

Formula (31): 0,A th AN I Sl  =  0,4 

1,0 
Formula (32): ( )SENE 1−=   0,3 

Formula (34): 


 1−
=f  0,3 

Total   10,0 

 


