Problem 4.

The answer is no.
Solution. Note that for each polynomial $P(x)$ with integral coefficients the integers a, b, c, d such that $P(1+\sqrt{3})=a+b \sqrt{3}$ and $P(3+\sqrt{5})=c+d \sqrt{5}$ are uniquely defined. We call a polynomial regular if $a-c$ and $b-d$ are even. If P, Q are regular and k is an integer, then $P+Q$ and $k P$ are obviously regular. Let us prove that $R=P Q$ is also regular. Indeed, if $P(1+\sqrt{3})=a+b \sqrt{3}, P(3+\sqrt{5})=c+d \sqrt{5}$, $Q(1+\sqrt{3})=a^{\prime}+b^{\prime} \sqrt{3}, Q(3+\sqrt{5})=c^{\prime}+d^{\prime} \sqrt{5}$, then $R(1+\sqrt{3})=(a+b \sqrt{3})\left(a^{\prime}+b^{\prime} \sqrt{3}\right)=\left(a a^{\prime}+3 b b^{\prime}\right)+\left(a b^{\prime}+b a^{\prime}\right) \sqrt{3}$, $R(3+\sqrt{5})=(c+d \sqrt{5})\left(c^{\prime}+d^{\prime} \sqrt{5}\right)=\left(c c^{\prime}+5 d d^{\prime}\right)+\left(c d^{\prime}+d c^{\prime}\right) \sqrt{5}$.
Clearly if $a \equiv c(\bmod 2), \quad b \equiv d(\bmod 2), \quad a^{\prime} \equiv c^{\prime}(\bmod 2), \quad b^{\prime} \equiv d^{\prime}(\bmod 2), \quad$ then $a a^{\prime}+3 b b^{\prime} \equiv c c^{\prime}+5 d d^{\prime}(\bmod 2)$ и $a b^{\prime}+b a^{\prime} \equiv c d^{\prime}+d c^{\prime}(\bmod 2)$.

Now the polynomial $P(x)=x$ is regular. It follows that so are all the polynomials with integral coefficients, therefore, the desired polynomial does not exist.

Solution of problem 5.

Note that it is enough to prove that $f(a, b, c)=f(b, a, c)=f(a, c, b)$. First, let us consider the following interpretation of our problem:

For every 6-tuple ($X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}$) satisfying conditions of the problem, we construct three sequences

$$
A=\left(a_{1}, \ldots, a_{2014}\right), B=\left(b_{1}, \ldots, b_{2014}\right), C=\left(c_{1}, \ldots, c_{2014}\right)
$$

as follows:
for $i=1, \ldots, 2014$

$$
a_{i}=\left\{\begin{array}{l}
2, \text { if } i \in Y_{1} \\
1, \text { if } i \in X_{1} \backslash Y_{1}, \\
0, \text { otherwise. }
\end{array}\right.
$$

Similarly, we define sequences B, C. Conditions (i), (ii), (iii) imply the following conditions for sequences (A, B, C) :
(P1) number of nonzero elements in A is a; number of nonzero elements in B is b; number of nonzero elements in C is c;
(P2) if $a_{i}=2$ for some i, then $b_{i}=c_{i}=0$; if $b_{i}=2$, then $c_{i}=0$.
Clearly, for every sequences (A, B, C) satisfying (P1), (P2) we may construct a sequence ($X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}$) that satisfies (i), (ii), (iii) of the problem.

So, $f(a, b, c)$ is a number of sequences (A, B, C) satisfying (P1), (P2).
Let us first prove that $f(a, b, c)=f(b, a, c)$. We establish the bijection Φ_{1} between triples corresponding to the order (a, b, c) and (b, a, c) as follows

$$
\Phi_{1}((A, B, C))=\left(A^{\prime}, B^{\prime}, C\right)
$$

where $A^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{2014}^{\prime}\right), B^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{2014}^{\prime}\right)$ and for all $i=1, \ldots, 2014$

$$
\left(a_{i}^{\prime}, b_{i}^{\prime}\right)=\left(b_{i}, a_{i}\right) \text { if }\left(a_{i}, b_{i}\right) \neq(1,2) \text { and }\left(a_{i}^{\prime}, b_{i}^{\prime}\right)=\left(a_{i}, b_{i}\right) \text { otherwise. }
$$

(Applying this transform twice we get the initial triple.)
Applying Φ_{1}, we get the property (P1) for (b, a): the number of entries 1,2 in A^{\prime} is b and the number of entries 1,2 in B^{\prime} is a. Let us check that (P2) will also be satisfied. If no, then there is i with $a_{i}^{\prime}=2$ and $b_{i}^{\prime} \in\{2,1\}$; the pair (2,2) cannot occur since we interchanged $\left(a_{i}, b_{i}\right)$; b_{i}^{\prime} cannot be 1 since we did not interchange (1,2). As to the sequence C, if $b_{i}^{\prime}=2$, then a_{i} was equal to 2 which gives that $c_{i}=0$. So, $f(a, b, c)=f(b, a, c)$.

To prove now that $f(a, b, c)=f(a, c, b)$ we consider a similar bijection Φ_{2} : $\Phi_{2}((A, B, C))=\left(A, C^{\prime}, B^{\prime}\right)$ with $B^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{2014}^{\prime}\right), C^{\prime}=\left(c_{1}^{\prime}, \ldots, c_{2014}^{\prime}\right)$ and for all $i=1, \ldots, 2014$ $\left(b_{i}^{\prime}, c_{i}^{\prime}\right)=\left(c_{i}, b_{i}\right)$ if $\left(b_{i}, c_{i}\right) \neq(1,2)$ and $\left(b_{i}^{\prime}, c_{i}^{\prime}\right)=\left(b_{i}, c_{i}\right)$ otherwise. Using a similar argument as explained above, conditions for (P1), (P2) hold for a pair (B^{\prime}, C^{\prime}). To show a full check with (P2), finally note that if $a_{i}=2$, then $b_{i}=c_{i}=0$ and the same holds after Φ_{2}.

Problem 6.

We use the following
Lemma. A convex quadrilateral $X Y Z T$ has an inscribed circle if and only if $\tan \frac{\angle Y X Z}{2}: \tan \frac{\angle T X Z}{2}=\tan \frac{\angle Y Z X}{2}: \tan \frac{\angle T Z X}{2}$.

Proof of the lemma. Let the incircles of triangles $X Y Z$ and $X T Z$ touch $X Z$ at Y_{1} and T_{1}, respectively. It is easy to see that $X Y_{1}=\frac{X Y+X Z-Y Z}{2}$ and $X T_{1}=\frac{X T+X Z-Y Z}{2}$, and $X Y Z T$ is tangential if and only if $X Y_{1}=X T_{1}$, which is equivalent to $X Y_{1}: Y_{1} Z=X T_{1}: T_{1} Z$ and, further, to $\tan \frac{\angle Y X Z}{2}: \tan \frac{\angle T X Z}{2}=\tan \frac{\angle Y Z X}{2}: \tan \frac{\angle T Z X}{2}$.

Applying the lemma to quadrilaterals $B_{1} A D_{1} C_{1}, C_{7} C_{1} C_{8} C_{2}, C_{4} C_{2} C_{6} C$, we have $\tan \frac{\angle B_{1} A C_{1}}{2}: \tan \frac{\angle D_{1} A C_{1}}{2}=\tan \frac{\angle B_{1} C_{1} A}{2}: \tan \frac{\angle D_{1} C_{1} A}{2}=\tan \frac{\angle C_{8} C_{1} C_{2}}{2}: \tan \frac{\angle C_{7} C_{1} C_{2}}{2}=$ $=\tan \frac{\angle C_{8} C_{2} C_{1}}{2}: \tan \frac{\angle C_{7} C_{2} C_{1}}{2}=\tan \frac{\angle C C_{2} C_{4}}{2}: \tan \frac{\angle C C_{2} C_{5}}{2}=\tan \frac{\angle C_{2} C C_{4}}{2}: \tan \frac{\angle C_{2} C C_{5}}{2}$.
that is,
$\tan \frac{\angle B A C}{2}: \tan \frac{\angle D A C}{2}=\tan \frac{\angle B C A}{2}: \tan \frac{\angle D C A}{2}$
and the quadrilateral $A B C D$ is circumscribed.
Applying again the lemma to quadrilaterals $\mathrm{BB}_{2} \mathrm{C}_{7} \mathrm{C}_{3}, C_{7} C_{1} C_{8} C_{2}, A B C D$, we get $\tan \frac{\angle C_{6} C_{8} D}{2}: \tan \frac{\angle D_{2} C_{8} D}{2}=\tan \frac{\angle C_{6} D C_{8}}{2}: \tan \frac{\angle D_{2} D C_{8}}{2}$. and the quadrilateral $C_{6} C_{8} D D_{2}$ is circumscribed, q.e.d.

