
Problem 1. 
Let KMN and ' 'KM N  be two beautiful triangles with common vertex, 

' 'KMN A KM N∠ = ∠ = ∠ . Without loss of generality, assume that 'M  lies between 
B  and M . The segments MN  and ' 'M N  have a common point, we denote it by R . 
Since 'KMR KM R∠ = ∠ , the points K , M , 'M , R  are concyclic and 

0' 180KM M KRM KRN∠ = −∠ = ∠ . Similarly, K , N , 'N , R  are concyclic, 
therefore 'KN N KRN∠ = ∠ . Thus 0' ' ' 180 'KM C KM M KN N KN C∠ = ∠ = ∠ = −∠ . 
It follows that the quadrilateral ' 'KM CN  is cyclic, and 

0180 ' ' 2C M KN C= ∠ +∠ = ∠ , so the angle C  is right.  
 
 



Problem 2. 

Does there exist a function   𝑓𝑓:𝑅𝑅 → 𝑅𝑅 satisfying the following two conditions: 

1) 𝑓𝑓  takes all real values; 
2) 𝑓𝑓(𝑓𝑓(𝑥𝑥)) = (𝑥𝑥 − 1)𝑓𝑓(𝑥𝑥) + 2 for all 𝑥𝑥 ∈ 𝑅𝑅? 

Answer: there is no such  𝑓𝑓 .  

Suppose that such 𝑓𝑓 does exist.   

1. Denote 𝑓𝑓(1) = 𝑎𝑎.  Set  𝑥𝑥 = 1  in 
                                        𝑓𝑓(𝑓𝑓(𝑥𝑥)) = (𝑥𝑥 − 1)𝑓𝑓(𝑥𝑥) + 2 ,                             (1) 

Then  f(a)=2. 

2. Now setting  𝑥𝑥 = 𝑎𝑎 in (1) we obtain   𝑓𝑓(2) = (𝑎𝑎 − 1) · 2 + 2 ,  then  𝑓𝑓(2) = 2𝑎𝑎.      
3. By condition,  ∃𝑏𝑏 ∈ 𝑅𝑅|𝑓𝑓(𝑏𝑏) = 1  . Let 𝑥𝑥 = 𝑏𝑏  in (1), then 
            𝑎𝑎 = 𝑓𝑓(1) = 𝑓𝑓�𝑓𝑓(𝑏𝑏)� = (𝑏𝑏 − 1) · 1 + 2 = 𝑏𝑏 + 1   , 𝑏𝑏 = 𝑎𝑎 − 1. 
4. Further,  ,  ∃𝑐𝑐 ∈ 𝑅𝑅|𝑓𝑓(𝑐𝑐) = 0.   Setting 𝑥𝑥 = 𝑐𝑐 in (1) we obtain 

    𝑓𝑓(0) = 𝑓𝑓�𝑓𝑓(𝑐𝑐)� = (𝑐𝑐 − 1) · 0 + 2 = 2, 𝑓𝑓(0) = 2.  
So we have 2 = 𝑓𝑓(0) = 𝑓𝑓(𝑎𝑎), whence 𝑓𝑓�𝑓𝑓(0)� = 𝑓𝑓(𝑓𝑓(𝑎𝑎)), or  
(0 − 1)𝑓𝑓(0) + 2 = (𝑎𝑎 − 1)𝑓𝑓(𝑎𝑎) + 2, or −1 · 2 + 2 = (𝑎𝑎 − 1) · 2 + 2, hence 𝑎𝑎 = 0. 

        As a result: 𝑓𝑓(0) = 2, 𝑓𝑓(2) = 2𝑎𝑎 = 0,𝑓𝑓(1) = 0, 𝑏𝑏 = −1,𝑓𝑓(−1) = 1. 

5. Let now 𝑑𝑑 ∈ 𝑅𝑅 be such that  𝑓𝑓(𝑑𝑑) = −1. Set 𝑥𝑥 = 𝑑𝑑 in (1), then  
1 = 𝑓𝑓(−1) = 𝑓𝑓�𝑓𝑓(𝑑𝑑)� = (𝑑𝑑 − 1) ∙ (−1) + 2 = −𝑑𝑑 + 3 whence 𝑑𝑑 = 2. That is 𝑓𝑓(2) =
−1, contrary to 𝑓𝑓(2) = 0.  

Note. There exist function 𝑓𝑓 satisfying (1) such that 𝐸𝐸(𝑓𝑓) ≠ 𝑅𝑅.  For example 

𝑓𝑓(𝑥𝑥) = �
𝑥𝑥−2
𝑥𝑥−1

,   𝑥𝑥 ≠ 1
0,   𝑥𝑥 = 1

  or 𝑓𝑓(𝑥𝑥) = �0,   𝑥𝑥 ≠ 0
2, 𝑥𝑥 = 0  



Problem 3. 
 
The answer is 180.  
 
We reformulate the problem as follows. Given are 100 lattice points (that is, points 
with integral coordinates). How many pairs of neighbours (points at distance 1) can 
they form?  
 
   To prove that this problem is equivalent to the original one, we assign the number 
2 3i j  to the point ( , )i j . In the set of numbers thus obtained the number of pairs in 
question is equal to the number of neighbouring points in the set of 100 points.  
 
   Conversely, in any set of 100 numbers we find for each number its largest divisor m 
not divisible by 2 or 3 and divide the set into groups of numbers with the same m. 
Obviously the numbers in a good pair belong to the same group. Now we can assign 
to each group a set of points where a point ( , )i j  corresponds to the number 2 3i j m . If 
some numbers from different groups correspond to coinciding or neighbouring points, 
we translate the image of each group by a vector long enough to avoid that.  
 
   We can prove now that the maximum number of neighbouring pairs is attained 
when the points form a 10 10×  square (and then the number is 180).  
 
   Let us consider rows (i.e. the set of points with the same ordinate) and columns (i.e. 
the set of points with the same abscissa). Suppose we have a  nonempty rows and b  
nonempty columns. Clearly 100ab ≥ .  
 
   If a row contains k  points then its points form at most 1k −  pairs. Denoting the 
numbers of points in the rows by 1 2, , ..., ak k k , we have at most 

1 2( 1) ( 1) ... ( 1) 100ak k k a− + − + + − = −  horizontal pairs of neighbouring points. 
Similarly, we have at most 100 b−  pairs of vertical pairs. Adding these inequalities 
we have that the total number of pairs does not exceed 
200 200 2 180a b ab− − ≤ − ≤ .  
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