РЕШЕНИЕ ЗАДАЧИ ЭКСПЕРИМЕНТАЛЬНОГО ТУРА

Магнитные взаимодействия

Часть 1. Взаимодействие с магнитным полем катушки.

1.1. Для измерения периода колебаний необходимо несколько раз измерить времена не менее 10 колебаний. Получены следующие значения времен 10 колебаний:

$$t_1 = 25,02c$$

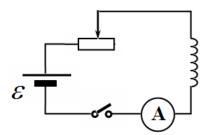
$$t_2 = 25,06c$$
.

$$t_3 = 24,92c$$

Расчет периода по этим данным дает

$$T = \frac{\langle t \rangle}{10} = 2,50c$$

Погрешность может быть рассчитана по формуле


$$\Delta t = 2\sqrt{\frac{\sum_{k} (t_k - \langle t \rangle)^2}{n(n-1)}} = 0.08c,$$

следовательно, погрешность определения периода равна $\Delta T = \Delta t / 10 = 0,008c$.

Окончательно можно записать

$$T = (2,50 \pm 0,01)c. \tag{1}$$

1.2. Для измерений использована схема (также допустимо подключение реостата по схеме потенциометра)

1.3. Результаты измерений зависимости периода колебаний маятника от силы тока в катушке приведены в таблице 1. Ниже показан график полученной зависимости.

Таблица 1

I,A	T, c	v^2, c^{-2}	$(v^2-v_0^2),c^{-2}$
0,00	2,655	0,142	0,000
0,80	2,062	0,235	0,093
0,37	2,350	0,181	0,039
-0,37	3,083	0,105	-0,037
-0,72	3,724	0,072	-0,070

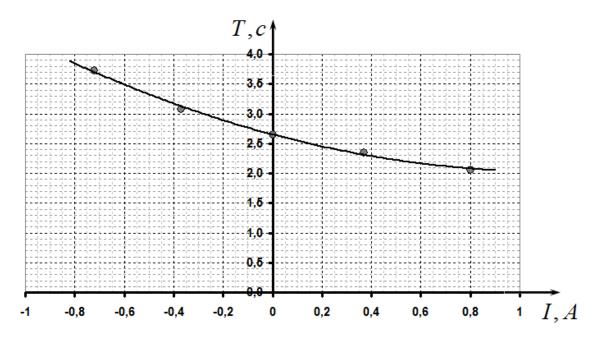
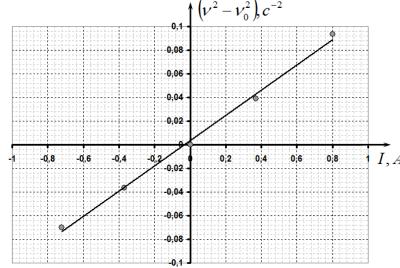


График 1. Зависимость периода колебаний маятника от силы тока в катушке.

1.4. Для описания движения маятника следует использовать уравнение

$$J\frac{d^2\varphi}{dt^2} = -mga \cdot \varphi - \mu I\varphi \,, \tag{2}$$

где φ — угол отклонения маятника от вертикали, J — момент инерции маятника относительно оси вращения, m — масса маятника, a — расстояние от оси вращения до центра масс маятника, $\mu I \varphi$ — момент силы, действующей на намагниченный шарик со стороны магнитного поля катушки. Из уравнения (2) следует, что квадрат частоты колебаний линейно зависит от силы тока:


$$v^2 = \frac{1}{T^2} = \frac{mga + \mu I}{I}$$

Еще более наглядно представить зависимость изменения квадрата частоты колебаний от силы тока

$$v^2 - v_0^2 = \frac{\mu I}{J}$$
, где $v_0^2 = \frac{mga}{J}$ —

квадрат частоты колебаний при отсутствии тока в катушке.

Таким образом, линейность зависимости величины $(v^2 - v_0^2)$ от силы тока доказывает, высказанное утверждение о прямой пропорциональности зависимости силы магнитного взаимодействия от силы тока в катушке. На рисунке показан график этой зависимости — ее

линейность подтверждает высказанное предположение.

D

Часть 2. «Точечные взаимодействия»

2.1

Для записи уравнения движения необходимо корректно рассчитать момент силы взаимодействия между намагниченными шариками. Так как сила является центральной, то ее плечо есть отрезок OD, а его длина равна

$$d = |OD| = (l + x) \cdot \alpha$$

где l — расстояние от оси вращения до шарика на маятнике, x — расстояние между шариками в положении равновесия. Здесь и далее углы считаем малыми. Угол α необходимо выразить через угол отклонения маятника φ . Для этого можно использовать соотношение

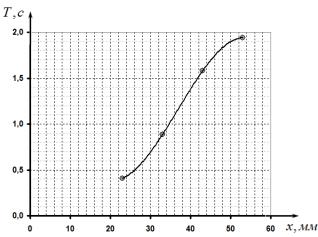
$$|CB| = l\varphi = x\alpha$$
,

из которого следует

$$\alpha = \frac{l}{x}\varphi$$

Таким образом, движение маятника в этом случае описывается уравнением

$$J\frac{d^2\varphi}{dt^2} = -mga\varphi - F\frac{l(l+x)}{x}\varphi. \tag{3}$$



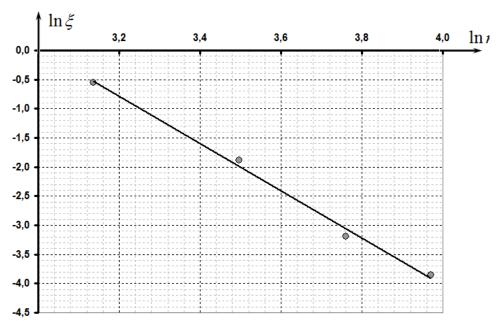
$$T = 2\pi \sqrt{\frac{J}{mga + F\frac{l(l+x)}{x}}}.$$
 (4)

2.2. Результаты измерения времени 10 колебаний при различных расстояниях между центрами шариков приведены в таблице 2 и на графике.

Таблица 2.

<i>x</i> , MM	t_1 ,c	t_2 ,c	<i>t</i> ₃ ,c	T, c
23	4,27	4,09	3,90	0,409
33	8,72	9,03	8,83	0,886
43	15,96	15,73	15,68	1,579
53	19,20	19,64	19,36	1,940

 \boldsymbol{C}

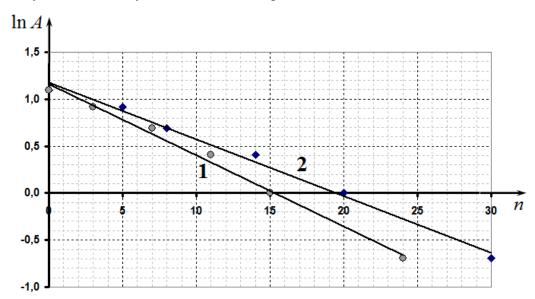

2.3 Для определения показателя степени необходимо выразить силу взаимодействия через измеряемые характеристики. Из формулы для периода колебаний следует, что величина изменения квадрата частоты равна

изменения квадрата частоты равна
$$v^2 - v_0^2 = F \, \frac{l \, \big(l + x \big)}{x} \frac{1}{J} \, ,$$

Откуда следует, что величина

$$\xi = \left(v^2 - v_0^2\right) \frac{x}{l+x}$$

пропорциональна силе магнитного взаимодействия $F = \frac{C}{r^{\gamma}}$. Для определения показателя степени необходимо построить график зависимости величины ξ от расстояния x в логарифмическом масштабе. Коэффициент наклона этого графика и даст искомую степень.



На рисунке показан график указанной зависимости. Из графика следует, что показатель степени равен $\gamma = 4$.

Часть 3. Магнитная шоколадка.

- 3.1. Шоколадка не влияет на период колебаний, но заметно увеличивает затухание колебаний. Это происходит вследствие возникновения токов Фуко в фольге.
- 3.2. Для доказательства этого утверждения можно измерить зависимость амплитуды колебаний A от времени (или, что равносильно, но проще, от числа колебаний n) в полулогарифмическом масштабе.

На графике приведены данные зависимости с шоколадкой (1) и без нее (2). Графики показывают увеличение затухания колебаний при наличии шоколадки.

Схема оценивания

№	Пункт задачи	Всего за	Баллы
		пункт	
1.1	Измерение периода:	0,5	
	- период больше 2 с;	,	0,1
	- проведено не менее 3 измерений;		0,1
	- в каждом измерении не менее 10 периодов;		0,1
	- найдено среднее значение;		0,1
	- оценена случайная погрешность;		0,1
1.2	Схема измерений (все элементы соединены	0,5	
	последовательно):	,	
	- источник;		0,1
	-катушка;		0,1
	-реостат (два варианта);		0,1
	-ключ;		0,1
	- амперметр;		0,1
1.3	Измерения (оценивается если период лежит в	2,0	
	диапазоне 1-5 с)		
	- измерено при 7 (5, 3, меньше) значениях силы		
	тока;		1(0,5; 0,3; 0)
	- ток в двух направлениях;		0,4
	- изменение периода не менее 50% (20%, меньше);		0,2 (0,1;0)
	- измерено время не менее 5 колебаний;		0,1
	Построение графика:		
	- оси подписаны и оцифрованы;		0,1
	- нанесены все точки в соответствии с таблицей;		0,1
	- проведена сглаживающая линия;		0,1
1.4	Линеаризация:	1,0	
	- зависимость квадрата частоты от силы тока		
	линейна;		0,4
	-проведен расчет для всех точек;		0,2
	Построение графика:		
	- оси подписаны и оцифрованы;		0,1
	- нанесены все точки в соответствии с таблицей;		0,1
	- проведена сглаживающая прямая;		0,1
	Вывод о правильности	1.0	0,1
2.1	Уравнение движения:	1,0	0.2
	- общий вид (динамика вращательного движения);		0,3
	- момент силы тяжести;		0,2
	- момент силы магнитного взаимодействия;		0,3
2.2	Формула для периода колебаний	4.0	0,2
2.2	Измерение периода колебаний: (оценивается, если	4,0	
	период лежит в диапазоне 0,3-5 с)		25(15, 10, 0)
	- измерено при 7 (5,3, меньше) расстояниях;		2,5(1,5; 1,0; 0)
	- изменение периода не менее чем в 4 раза (2 раза,		1 2(0 5.0)
	меньше);		1,2(0,5;0)
	Построение графика:		0.1
	- оси подписаны и оцифрованы;		0,1
	- нанесены все точки в соответствии с таблицей;		0,1
	- проведена сглаживающая линия;		0,1

2.3	Определение показателя степени	4,0	
	Найдена правильная линеаризация;		2,0
	Рассчитаны параметры линеаризованной		
	зависимости;		0,5
	Построение графика:		
	- оси подписаны и оцифрованы;		0,1
	- нанесены все точки в соответствии с таблицей;		0,1
	- проведена сглаживающая прямая;		0,1
	Найден коэффициент наклона в пределах от 2 до		(0,6)
	6;		
	Показатель степени 4;		1,2
3.1		0,5	
	Период постоянен;		0,2
	Увеличивается затухание;		0,2
	Причина – токи Фуко в шоколадке.		0,1
3.2		1,5	
	Измерена зависимость амплитуды от числа		
	колебаний (равносильно – число колебаний для		
	уменьшения амплитуды в указанных пределах)		1,2
	Построение графика:		
	- оси подписаны и оцифрованы;		0,1
	- нанесены все точки в соответствии с таблицей;		0,1
	- проведена сглаживающая линия;		0,1
	ВСЕГО	15	