6. Find all integer solutions of the equation 222 — y'* = 1.

The answer is ¢ = 1, y = £1.

Solution.

Lemma 1. If ¢ > 1 is an integer, then a® — a® + a* — a® + a® — a + 1 is not a perfect square.

Proof. If a® —a®+a*—a®+a?—a+1 is a perfect square then so is 256(a+1)?(a®—a®+a*—a+a’—a+1) = 256(a®+a”+a+1).
The latter however is impossible since

(16a* + 8a® — 2a” +a — 1)? < 256(a®+ ¢ 4+ a + 1) < (16a* 4 8a® — 2a” + a)?
fora>3and a® —a® +a*—a®+a?—a+1=143 fora = 2.

Lemma 2. If a is an integer then (a +1,a% —a® + a* —a® 4+ a? —a+ 1) equals 1 or 7.
Proof. The difference

a6—a5—|—a4—a3—|—a2—a—|—1—7:(a6—1)—(a5—|—1)—|—(a4—1)—(a3—|—1)—|—(a2—1)—(a—|—1)

is divisible by @ + 1, therefore, if (a +1,a° — a® + a* — a® + a® — a + 1) = d then 7 divides d.
Now in the original problem we have

2x2 — (yZ 4 1)(3/12 _ y10 4 yS _ y6 _|_y4 _ yZ 4 1)
Since 7 never divides y? + 1 for integral y, it follows from Lemma 2 that
(P +1y 2=y =y oyt 2 ) = 1,

therefore one of the factors is a square and another is a square multiplied by 2.
However y'2 — y1% 4+ 4® — ¢ +94* — 4% + 1 is odd, thus

4 2
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We have y? < 1 by Lemma 1, y = 0 does not give an integral z, so y = £1 and = = +1.
Marking scheme
4 41 is factored, factors proved to be coprime — 1 point

1
)
Y —yt +® — 4% + 4t — y® + 1 is proved to be perfect square — 1 point
y'? — % + 4% — y + y* — y? + 1 lies between a? and (a + 1)? for some a — 1 point



4. Answer: there are not suchm,n, f.
Proof. Let f: R — R be any function satisfying
f(f(x)) =2f(x)—x—2,Vx€R (1)
We prove that there do not exist integers m, k such that k = 0 and
fm)=m+k (2)
1. Letfirst k =0, then (2) becomes f(m)=m.

Setx =min (1), thenm = f(m) = f(f(m)) =2f(m)—m—2=2m—m—2,orm =m — 2 which
is impossible.

2. Letnow k = 1, then we have
fmy=m+1 - f(m+1)=f(f(m))=2f(m)—m—-2=2(m+1) —m—2
or f(m+1)=m.
But then
m+1=fm)=f(fm+1))=2f(m+1)—(m+1)-2=2m-m—-3=m-3,
a contradiction.

Suppose now that there is some integer k > 2 such that (2) is valid for some m. Choose the minimum
possible such k.

We have f(m) =m+k -
f(m+k):f(f(m)):2f(m)—m—2=2(m+k)—m—2:(m+k)+(k—2).

Denote my =m+k, k; = k — 2, then f(m,) = m; + ky. This contradicts with the minimality of k if
ky = 2. Butif ky < 2 thenk; = 0or k; = 1, which isimpossible. Thus the proof is finished.



Problem 1. Given is an acute AABC. Let De AB, DM 1 BC (M eBC) and
DN LAC (NeAC). If H and H, are the orthocentres of AMNC and AMND
respectively, prove that the area of the quadrilateral AH,BH, does not depend on the position
of D onthe side AB.

Solution: Since NH, L BC (altitude) and DM L BC (given), then NH, /DM . Also,
MH, L AC (altitude) and DN L AC
(given). Thus MH,DN and it follows
that NDMH, is a parallelogram.
Analogously NCMH, is a parallelogram
and consequently CN = MH, .

On the other hand CH, L. MN and
DH, L MN, which gives that
CH,[IDH,. Since the sides of ACNH,
are parallel to the sides of AH,MD and
CN =MH, it follows that
ACNH, = AH,MD. Thus CH,=DH,,
which together with CH, [IDH, gives that
CHH,D is a parallelogram too.
Consequently H,H, =CD.

If Z/ADC =9, then

H>

S asc :%AB.CDsingo and finally

SameH, = % AB.H,H,sing = % AB.CDsing =S, , which ends the proof.

Marking scheme. 5 points to prove that H,H, =CD and 2 points to end the proof.
Partial credits: 3 points to prove that ACNH, = AH,MD (1 point to prove that NDMH, is a
parallelogram and 1 point to prove that NCMH, is a parallelogram).




Problem 1. Given is an acute AABC. Let De AB, DM L BC (M eBC) and
DN LAC (NeAC). If H and H, are the orthocentres of AMNC and AMND
respectively, prove that the area of the quadrilateral AH,BH, does not depend on the position
of D onthe side AB.

Solution: Since NH, L BC (altitude) and DM L BC (given), then NH: || DM. Also,
MH, L AC (altitude) and DN L AC
(given). Thus MH1 || DN and it follows
that NDMH, is a parallelogram.
Analogously NCMH, is a parallelogram
and consequently CN = MH, .

On the other hand CH, L. MN and
DH, L MN, which gives that CH: ||
DH.. Since the sides of ACNH, are
parallel to the sides of AH,MD and
CN =MH, it follows that
ACNH, = AH,MD. Thus CH,=DH,,
which together with CH1 || DH2 gives that
CHH,D is a parallelogram too.
Consequently H,H, =CD.

If ZADC =g, then H

S asc :%AB.CDsingo and finally

SameH, = % AB.H,H,sing = % AB.CDsing =S, , which ends the proof.



3agayua 5. Ha naumaronansx Beimykjoro uersipexyronbHuka ABCD  moctpoens
npaBuibHbIe TpeyroasHukd ACB™ 1 BDC’, npuuem touku B u B” jexkar mo ogHy CTOpOHY OT
AC, a touku C u C" nexar mo omuy cropony ot BD. Haiimure /BAD + ZCDA, ecnu
u3BecTHO, uto B'C” = AB + CD.

(Apmenust)

Ilepsoe pewenue:. Iloctpoum paBHOCTOpOHHHMM TpeyroibHuK BCF, kak moka3aHo Ha
YepTexe. Torma /FBC =60°=~/C'BD u
CJIEIOBATEIILHO /FBC'=/ZCBD. Tak  kak
BF=BC u BC'=BD, umeem ABFC'=ABCD.
Otkyna FC'=CD u /BFC'=/ZBCD.
Amnanornuno, B'F=AB u £ZB'FC =~/ZABC. U3
paBenctBa B'C'= AB+CD crnenyer paBeHCTBO
B'C'=B'F+FC' 3nauut Touka F mexur Ha
OTpe3Ke B'C'. Ho TOTIA
/B'FC + /BFC'=180° + Z/BFC =240°.
[Tonyuaem, uro
/BCD + Z/ABC = /BFC '+ /B'FC = 240° ",
cnenoBarensHo, ZBAD + Z/CDA=120°.




Alternative proof of the estimation m <4n - 8. (*)

First we call a cross a union of some row and some column of the table such that the row as well
as the column contains = 3 unit squares from the given convenient set M, and, besides, one of

the squares is common for this row and this column (see fig. below)

X
X

Then the given statement will immediately follow the next Claim.

Claim. If some set M contains m = 4n — 7 squares of the table then there exists some
cross in the table.

To prove this we use induction on n.

Base. n =5, 6 or 7. Consider one of the rows or the columns of the table that contains the
maximum k of squares from M among all the rows and columns. Note that k = 3. Let for

definiteness these k squares are at the very top of the leftmost column. Any of the top k rows
contains =2 squares from M, otherwise Claim would be proved. Hence, the total number of

squares from M in the top k rows is at most 2k. The remaining n — k rows contains in total at
most k(n — k) squares. It follows that 4n-7 < m = 2k+ k(n — k), or k* — (n+2)k + 4n-7 = 0.

However, the discriminant of the LHS is D = (n+2)?- 4(4n-7) = (n-4)(n-8)<0 for n =5, 6 and 7,
hence k? — (n+2)k + 4n=7 > 0, contradiction.

Suppose now that Claim is true for n = k and prove that it is true also for n =k + 3.

First, there is a row containing at least 3 squares from the given set M (otherwise m =2n).
Similarly, there is a column containing =3 squares from M. Consider such a row and such a

column. WLOG we can assume that this column is the leftmost one in the table and the squares
from M in it are all at the very top of column; similar assumption for the row (see fig. below).




Consider one of the top three rows. If it contains at least 3 squares from M then this row
together with the leftmost column give us the needed cross. Hence we may assume that any of
the three top rows as well as any of the three rightmost columns contains at most 2 squares from
M. Thus we have in total at most 12 squares from M in the shaded area.

Now, sincem = 4n -7 =4(k + 3) = 7 = 4k — 7 +12, we conclude that the remaining k X k
table contains at least 4k — 7 squares from M. Hence, by the induction hypothesis, this k X k
table contains a cross which is also a cross for the initial n X n table. This finishes the proof of
the Claim.



	prob6e
	Problem 4
	Problem1
	Problem1_12
	Problem5
	proof_of_pr2

