
6. Find all integer solutions of the equation 2x2 � y
14 = 1.

The answer is x = �1, y = �1.

Solution.

Lemma 1. If a > 1 is an integer, then a
6
� a

5 + a
4
� a

3 + a
2
� a + 1 is not a perfect square.

Proof. If a6�a5+a
4
�a

3+a
2
�a+1 is a perfect square then so is 256(a+1)2(a6�a5+a

4
�a

3+a
2
�a+1) = 256(a8+a

7+a+1).

The latter however is impossible since

(16a4 + 8a3 � 2a2 + a� 1)2 < 256(a8 + a
7 + a+ 1) < (16a4 + 8a3 � 2a2 + a)2

for a > 3 and a
6
� a

5 + a
4
� a

3 + a
2
� a + 1 = 43 for a = 2.

Lemma 2. If a is an integer then (a + 1; a6 � a
5 + a

4
� a

3 + a
2
� a+ 1) equals 1 or 7.

Proof. The di�erence

a
6
� a

5 + a
4
� a

3 + a
2
� a+ 1� 7 = (a6 � 1)� (a5 + 1) + (a4 � 1)� (a3 + 1) + (a2 � 1)� (a+ 1)

is divisible by a+ 1, therefore, if (a+ 1; a6 � a
5 + a

4
� a

3 + a
2
� a+ 1) = d then 7 divides d.

Now in the original problem we have

2x2 = (y2 + 1)(y12 � y
10 + y

8
� y

6 + y
4
� y

2 + 1):

Since 7 never divides y2 + 1 for integral y, it follows from Lemma 2 that

(y2 + 1; y12 � y
10 + y

8
� y

6 + y
4
� y

2 + 1) = 1;

therefore one of the factors is a square and another is a square multiplied by 2.

However y12 � y
10 + y

8
� y

6 + y
4
� y

2 + 1 is odd, thus

y
12
� y

10 + y
8
� y

6 + y
4
� y

2 + 1 = v
2
:

We have y2 6 1 by Lemma 1, y = 0 does not give an integral x, so y = �1 and x = �1.

Marking scheme

y
14 + 1 is factored, factors proved to be coprime { 1 point

y
12
� y

10 + y
8
� y

6 + y
4
� y

2 + 1 is proved to be perfect square { 1 point

y
12
� y

10 + y
8
� y

6 + y
4
� y

2 + 1 lies between a
2 and (a+ 1)2 for some a { 1 point



4. Answer: there are not such 𝑚𝑚,𝑛𝑛,𝑓𝑓. 

Proof. Let 𝑓𝑓:𝑅𝑅 → 𝑅𝑅 be any function satisfying  

𝑓𝑓�𝑓𝑓(𝑥𝑥)� = 2𝑓𝑓(𝑥𝑥) − 𝑥𝑥 − 2, ∀𝑥𝑥 ∈ 𝑅𝑅     (1). 

We prove that there do not exist integers 𝑚𝑚,𝑘𝑘 such that 𝑘𝑘 ≥ 0 and  

𝑓𝑓(𝑚𝑚) = 𝑚𝑚 + 𝑘𝑘                   (2) 

1. Let first   𝑘𝑘 = 0, then (2) becomes   𝑓𝑓(𝑚𝑚) = 𝑚𝑚.  

Set 𝑥𝑥 = 𝑚𝑚 in (1), then 𝑚𝑚 = 𝑓𝑓(𝑚𝑚) = 𝑓𝑓�𝑓𝑓(𝑚𝑚)� = 2𝑓𝑓(𝑚𝑚) −𝑚𝑚 − 2 = 2𝑚𝑚−𝑚𝑚 − 2, or 𝑚𝑚 = 𝑚𝑚 − 2 which 
is impossible.  

2. Let now 𝑘𝑘 = 1, then we have  

𝑓𝑓(𝑚𝑚) = 𝑚𝑚 + 1   →   𝑓𝑓(𝑚𝑚 + 1) = 𝑓𝑓�𝑓𝑓(𝑚𝑚)� = 2𝑓𝑓(𝑚𝑚) −𝑚𝑚 − 2 = 2(𝑚𝑚 + 1) −𝑚𝑚 − 2 

or    𝑓𝑓(𝑚𝑚 + 1) = 𝑚𝑚.   

But  then  

𝑚𝑚 + 1 = 𝑓𝑓(𝑚𝑚) = 𝑓𝑓�𝑓𝑓(𝑚𝑚 + 1)� = 2𝑓𝑓(𝑚𝑚 + 1) − (𝑚𝑚 + 1) − 2 = 2𝑚𝑚−𝑚𝑚 − 3 = 𝑚𝑚 − 3,  

a contradiction. 

Suppose now that there is some integer 𝑘𝑘 ≥ 2 such that (2) is valid for some 𝑚𝑚. Choose the minimum 
possible such 𝑘𝑘.  

We have  𝑓𝑓(𝑚𝑚) = 𝑚𝑚 + 𝑘𝑘  →    

𝑓𝑓(𝑚𝑚 + 𝑘𝑘) = 𝑓𝑓�𝑓𝑓(𝑚𝑚)� = 2𝑓𝑓(𝑚𝑚) −𝑚𝑚 − 2 = 2(𝑚𝑚 + 𝑘𝑘)−𝑚𝑚 − 2 = (𝑚𝑚 + 𝑘𝑘) + (𝑘𝑘 − 2). 

Denote  𝑚𝑚1 = 𝑚𝑚 + 𝑘𝑘, 𝑘𝑘1 = 𝑘𝑘 − 2,  then 𝑓𝑓(𝑚𝑚1) = 𝑚𝑚1 + 𝑘𝑘1.  This contradicts with the minimality of 𝑘𝑘 if 
𝑘𝑘1 ≥ 2.  But if 𝑘𝑘1 < 2 then 𝑘𝑘1 = 0 or 𝑘𝑘1 = 1, which is impossible.  Thus the proof is finished. 



Problem 1. Given is an acute ABC∆ . Let D AB∈ , DM BC⊥  ( M BC∈ ) and 
DN AC⊥  ( N AC∈ ). If 1H  and 2H  are the orthocentres of MNC∆  and MND∆  
respectively, prove that the area of the quadrilateral 1 2AH BH  does not depend on the position 
of D  on the side AB .  

Solution: Since 1NH BC⊥  (altitude) and DM BC⊥  (given), then 1NH DM . Also,  
1MH AC⊥  (altitude) and DN AC⊥  

(given). Thus 1MH DN  and it follows 
that 1NDMH  is a parallelogram. 
Analogously 2NCMH  is a parallelogram 
and consequently 2CN MH= .  

On the other hand 1CH MN⊥  and 
2DH MN⊥ , which gives that 

1 2CH DH . Since the sides of 1CNH∆   
are parallel to the sides of 2H MD∆  and  

2CN MH=  it follows that 
1 2CNH H MD∆ ≅ ∆ . Thus 1 2CH DH= , 

which together with 1 2CH DH  gives that 
1 2CH H D  is a parallelogram too. 

Consequently 1 2H H CD= .  
If ADC ϕ∠ = , then 
1 . sin
2ABCS AB CD ϕ=  and finally 

1 2 1 2
1 1. sin . sin
2 2AH BH ABCS AB H H AB CD Sϕ ϕ= = = , which ends the proof.  

 
Marking scheme. 5 points to prove that 1 2H H CD=  and 2 points to end the proof. 
Partial credits: 3 points to prove that 1 2CNH H MD∆ ≅ ∆  (1 point to prove that 1NDMH  is a 
parallelogram and 1 point to prove that 2NCMH  is a parallelogram). 

N 

M 

H2 

A B 

C 

D 

H1 



Problem 1. Given is an acute ABC∆ . Let D AB∈ , DM BC⊥  ( M BC∈ ) and 
DN AC⊥  ( N AC∈ ). If 1H  and 2H  are the orthocentres of MNC∆  and MND∆  
respectively, prove that the area of the quadrilateral 1 2AH BH  does not depend on the position 
of D  on the side AB .  

Solution: Since 1NH BC⊥  (altitude) and DM BC⊥  (given), then NH1 || DM. Also,  
1MH AC⊥  (altitude) and DN AC⊥  

(given). Thus MH1 || DN and it follows 
that 1NDMH  is a parallelogram. 
Analogously 2NCMH  is a parallelogram 
and consequently 2CN MH= .  

On the other hand 1CH MN⊥  and 
2DH MN⊥ , which gives that CH1 || 

DH2. Since the sides of 1CNH∆   are 
parallel to the sides of 2H MD∆  and  

2CN MH=  it follows that 
1 2CNH H MD∆ ≅ ∆ . Thus 1 2CH DH= , 

which together with CH1 || DH2 gives that 
1 2CH H D  is a parallelogram too. 

Consequently 1 2H H CD= .  
If ADC ϕ∠ = , then 
1 . sin
2ABCS AB CD ϕ=  and finally 

1 2 1 2
1 1. sin . sin
2 2AH BH ABCS AB H H AB CD Sϕ ϕ= = = , which ends the proof. 
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Задача 5. На диагоналях выпуклого четырехугольника ABCD построены 
правильные треугольники ACB´ и BDC´, причем точки B и B´ лежат по одну сторону от 
AC, а точки C и C´ лежат по одну сторону от BD. Найдите ∠BAD + ∠CDA, если 
известно, что B´C´ = AB + CD. 

(Армения)  
Первое решение: Построим равносторонний  треугольник BCF , как показано на 
чертеже. Тогда 060 'FBC C BD∠ = = ∠  и 
следовательно 'FBC CBD∠ = ∠ . Так как 
BF BC=  и 'BC BD= , имеем 'BFC BCD∆ ≅ ∆ . 
Откуда 'FC CD=  и 'BFC BCD∠ = ∠ . 
Аналогично, 'B F AB=  и 'B FC ABC∠ = ∠ . Из 
равенства ' 'B C AB CD= +  следует равенство 

' ' ' 'B C B F FC= +  значит точка F  лежит на 
отрезке ' 'B C . Но тогда 

0 0' ' 180 240B FC BFC BFC∠ +∠ = +∠ = . 
Получаем, что  

0' ' 240BCD ABC BFC B FC∠ +∠ = ∠ +∠ =  и, 
следовательно, 0120BAD CDA∠ +∠ = . 
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Alternative proof of the estimation m 4n – 8. (*) 

First we call a cross a union of some row and some column of the table such that the row as well 
as the column contains  3 unit squares from the given convenient set M, and, besides, one of 
the squares is common for this row and this column (see fig. below) 

 

 

 

 

 

 

Then the given statement will immediately follow the next Claim. 

Claim. If some set M contains m  4n – 7 squares of the table then there exists some 
cross in the table. 

To prove this we use induction on n. 

Base. n = 5, 6 or 7. Consider one of the rows or the columns of the table that contains the 
maximum k of squares from M among all the rows and columns. Note that k  3. Let for 
definiteness these k squares are at the very top of the leftmost column. Any of the top k rows 
contains 2 squares from M, otherwise Claim would be proved. Hence, the total number of 
squares from M in the top k rows is at most 2k. The remaining n – k rows contains in total at 
most k(n – k) squares. It follows that 4n–7  ≤ m  2k+ k(n – k), or k2 – (n+2)k + 4n–7  0. 
However, the discriminant of the LHS is D = (n+2)2– 4(4n–7) = (n–4)(n–8)<0 for n = 5, 6 and 7, 
hence k2 – (n+2)k + 4n–7 > 0, contradiction. 

Suppose now that Claim is true for n = k and prove that it is true also for n = k + 3. 

First, there is a row containing at least 3 squares from the given set M (otherwise m 2n). 
Similarly, there is a column containing 3 squares from M. Consider such a row and such a 
column. WLOG we can assume that this column is the leftmost one in the table and the squares 
from M in it are all at the very top of column; similar assumption for the row (see fig. below). 

 

 

 

 

 



Consider one of the top three rows. If it contains at least 3 squares from M then this row 
together with the leftmost column give us the needed cross. Hence we may assume that any of 
the three top rows as well as any of the three rightmost columns contains at most 2 squares from 
M. Thus we have in total at most 12 squares from M in the shaded area. 

Now, since m  4n – 7 = 4(k + 3) – 7 = 4k – 7 +12, we conclude that the remaining 𝑘𝑘 × 𝑘𝑘 
table contains at least 4k – 7 squares from M. Hence, by the induction hypothesis, this 𝑘𝑘 × 𝑘𝑘 
table contains a cross which is also a cross for the initial 𝑛𝑛 × 𝑛𝑛 table. This finishes the proof of 
the Claim. 


	prob6e
	Problem 4
	Problem1
	Problem1_12
	Problem5
	proof_of_pr2

