VII Международная Жаутыковская олимпиада по математике Алматы, 2011

16 января 2011 года, 9.00–13.30 Первый день

(Каждая задача оценивается в 7 баллов)

- **1.** В трапеции ABCD точки M и N середины оснований AD и BC соответственно.
- а) Докажите, что трапеция равнобедренная, если известно, что точка пересечения серединных перпендикуляров к боковым сторонам лежит на отрезке *MN*.
- б) Остается ли утверждение пункта а) в силе, если известно лишь, что точка пересечения серединных перпендикуляров к боковым сторонам лежит на прямой MN?
- **2.** Найдите все функции $f: R \rightarrow R$ такие, что для любых $x,y \in R$ выполнено равенство f(x + f(y)) = f(x f(y)) + 4xf(y). (Здесь R обозначает множество действительных чисел.)
- **3.** Обозначим через N множество всех целых положительных чисел. Упорядоченную пару (a;b) чисел $a,b \in N$ назовем *интересной*, если для любого $n \in N$ существует $k \in N$, такое, что число $a^k + b$ делится на 2^n . Найдите все интересные упорядоченные пары чисел.

VII International Zhautykov Olympiad in Mathematics Almaty, 2011

16 January, 2011, 9.00–13.30 First day

(Each problem is worth 7 points)

- 1. Given is trapezoid ABCD, M and N being the midpoints of the bases AD and BC, respectively.
- a) Prove that the trapezoid is isosceles if it is known that the intersection point of perpendicular bisectors of the lateral sides belongs to the segment *MN*.
- b) Does the statement of the point a) remain true if it is only known that the intersection point of perpendicular bisectors of the lateral sides belongs to the line *MN*?
- **2.** Find all functions $f: R \rightarrow R$ which satisfy the equality

$$f(x + f(y)) = f(x - f(y)) + 4xf(y)$$

for any $x,y \in R$. (Here R denotes the set of real numbers.)

3. Let *N* denote the set of all positive integers. An ordered pair (a;b) of numbers $a,b \in N$ is called *interesting*, if for any $n \in N$ there exists $k \in N$ such that the number $a^k + b$ is divisible by 2^n . Find all interesting ordered pairs of numbers.