
Marking Scheme 

of the 1st day problems in Mathematics 

 

Problem No 1. Answer: . 

1st solution. First, notice that , hence . 

It follows that  and . 

Further, from the original equation we obtain 

.   (*) 

The primality of  together with  implies either  or  or 

. Anyway, we have . 

Suppose that . Then , so that  and , hence 

 So we obtain  which contradicts  

Thus we have . (5 points) 

1. If  then . It is easy to check that the cases  are not 
suitable. Now, for  we have , because the function  is 

increasing for . Thus the case  is not possible. 

2. If  then . One can easily verify that the value  is 
appropriate, and for  we have . (+2 points) 

2nd solution. As in the 1st solution, we have , so that . 
Therefore . Further,  hence  

   (1). (5 points) 

Then (*) becomes , or 
, i.e. , . Then 

from (1) . (+2 points) 



Problem No 2  
Solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Choose a point K  on the extension of MD beyond D  such that DK NB=  (see Fig. 1). It 
follows from 0180KDA ADC ABN∠ = −∠ = ∠ , DA AB= , and DK NB=  that 

KDA NBA∆ = ∆ . Therefore KA AN=  and MK MD DK MD NB MN= + = + = . Hence, 
KMA NMA∆ = ∆  and DMA NMA∠ = ∠ . Similarly we can prove that MNA BNA∠ = ∠ . 

Take a point H  on the segment MN  such that MH MD= . Then NH BN= . Since 
DMA HMA∠ = ∠  and MD MH= , the points D  and H  are symmetric with respect to AP . 

Similarly, B  and H  are symmetric with respect to AN . Hence 2DAB MAN∠ = ∠ . 
Therefore, 

0 0190 90
2

HPA DPA ABD DAB MAN∠ = ∠ = ∠ = − ∠ = −∠ . 

It means that PH AQ⊥ . In the same way we can prove that QH AP⊥ . Thus the altitudes of 
APQ  meet at H . 
 
Marking scheme: 
If correctly proved that triangles ADM and AHM are equal (or similar) – (4 points) 
If correctly proved that BH and AQ are perpendicular lines (or similar) – (+ 3 points)  
Statement that BP and AQ are perpendicular, without proof – (1 point) 
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Fig. 1 



Problem No. 3 
First solution. 
Note that every figure consists of two right isosceles triangles with leg 1. The hypotenuse of such 
triangle may be directed either from lower left to upper right corner of a square (we call it left 
hypotenuse) or from upper left to lower right corner (we call it right hypotenuse). Since each 
hypotenuse belongs to two triangles, the number of triangles with left hypotenuse is even. On the 
other hand, every figure of the first kind contains exactly one triangle with left hypotenuse, while 
every other figure contains an even number of such triangles. It follows that the number of 
figures of the first kind (big triangles) is even. 

Now we colour the columns of the rectangle in black and white: columns with even 
numbers will be black and the rest will be white. Figures of the first and third kind can lie in a 
single column (in this case (we call them vertical) or intersect two neighbouring columns (then 
they are horizontal). Obviously the black part of a figure of the second kind or a vertical figure 
has integral area. The black part of a horizontal figure always has area 1/2. Since the whole black 
area is integral, the total number of horizontal figures is even. 

Applying the same argument to rows we prove that the total number of vertical figures is 
also even. Thus we have proved that the total number of figures of the first and the third kind is 
even, and the number of figures of the first kind is also even, whence the desired result follows. 
Second solution. 
We begin with proving that the number of figures of the first kind is even in the same way as in 
the above solution. Then we colour our rectangle black and white as a chessboard, that is, so that 
unit squares sharing a side are of different colours. Every figure of the second kind covers an 
integral black area. The black part of every other figure has area $1\over 2$. Thus the total 
number of triangles and parallelograms is even, and it remains to subtract the even number of 
triangles.  
Third solution. 
The figures of the third kind (parallelograms) can be distributed into 2 groups: horizontal 
(covered by one row) and vertical (covered by one column). First we consider a horizontal 
colouring of the rectangle, as shown in the Fig. 2 below. 

 
    

    

    

    

    

    

    

    

 
Fig. 2 

 
Obviously the black and white areas of this colouring are equal. 

Note that in every figure of the second kind (we shall call it merely a square) both black 
and white parts always have area 1/2. On the other hand, in a figure of the first kind (a triangle) 
as well as in a vertical parallelogram black and white areas are either 3/4 and 1/4 respectively 



(then we say that the figure is almost black) or 1/4 and 3/4 respectively (and we call it almost 
white). Suppose we have a squares, b horizontal parallelograms, c vertical parallelograms and d 
triangles. We need to prove that b + c is even. Let c = c1 + c2, d = d1 + d2, where c1, c2, d1, d2 
are numbers of almost white vertical parallelograms, almost black vertical parallelograms, 
almost white triangles, and almost black triangles, respectively. 

Since black and white parts of the rectangle have equal areas, 
½ a + ½ b + ¾ c1 + ¼ c2 + ¾ d1+ ¼ d2 = ½ a + ½ b + ¼ c1+¾ c2+ ¼ d1 + ¾ d2, 

therefore c1 + d1 = c2 + d2.  
Using vertical colouring in the same way, we get b1 + d3 = b2 + d4, where b1 and b2 are 

the numbers of almost white and almost black horizontal parallelograms in the new colouring (b2 
+ b2 = b), d3 and d4 are the numbers of almost white and almost black triangles in the new 
colouring (d3 + d4 = d = d1 + d2).  

Now we have b + c = b1 + b2 + c1 + c2 =2 b2 +2 c2 + d4+ d2 – (d1 + d3) = 2 b2+2 c2 +2d 
– 2 d3 – 2 d1  is even, QED 
 
Marking scheme: 
the number of figures of the first kind is even – 3 points; 
the total number of figures of the first and the third kind is even – 3 points. 



Marking Scheme 
of the 2nd day problems in Mathematics 

 
Problem No 4.  
Solution: The biggest prime, which could be reached when n  is fixed, would not exceed the 
sum of the biggest odd positive integer smaller than n , all even integers from 2 to n  and 
some additional 2-es. It follows that if 14n = , then the biggest prime number, which could  
be achieved, will not exceed the number 13 2 4 6 8 10 12 14 3 2 75+ + + + + + + + ⋅ = . On the 
other hand the operation under consideration is invariant with respect to the parity of the 
number of the odd positive integers which do not exceed n . It follows that if 15n =  or 

16n = , the integer 97 could not be the last. Let 17n = . The sum of all even positive integers 
less than 17 is equal to 72. The odd positive integers less than 17 give four additional 2-es 
when the operation is applied to them in pairs.  Since ( )97 72 2 4 17− + ⋅ = , the only way to 
achieve 97, when 17n = , is to start by 17 and in a suitable order to add integers from the set 
{ }2, 2, 2, 2, 2, 4, 6, , 16 , obtaining each time a new prime number different from the 
previous one. Two of these 12 integers in the set are equal to 0 modulo 3, three of them are 
equal to 1 modulo 3 and seven of them are equal to 2 modulo 3. The number 17 is equal to 2 
modulo 3 and a number equal to 2 or to 0 modulo 3 should be added to it only. When a 
number equal to 1 modulo 3 is obtained, then a number equal to 1 or to 0 modulo 3 should be 
added only. Thus 97 could not be achieved since the integers in the set under consideration 
which are equal to 1 modulo 3 are less than the integers which are equal to 2 modulo 3.  The 
answer of the problem is 18n = . Firstly, apply the operation to the pairs (3,5); (7,9); (11,13) 
and (15,17). Further; proceed in the following way: (1,2) →  3; (3,2) →  5; (5,2) →  7; (7,4) 
→  11; (11,2) →  13; (13,6) →  19; (19,10) →  29; (29,8) →  37; (37,16) →  53; (53,14) →  
67; (67,12) →  79, (79,18) →  97.  
 
Marking scheme:  

1 points for 14n ≥  
2 points for a correct proof 17n ≥ , 1 point for the invariance of the operation (this 

point is not accumulated); 
2 points for a correct consideration of the case 17n = ; 
2 points for a correct example in the case 18n = . 



Problem No 5. In every vertex of a regular n-gon exactly one chip is placed. At each step 
one can exchange any two neighbouring chips. Find the least number of steps necessary to reach 

the arrangement where every chip is moved by
2
n 
  

  positions clockwise from its initial position.  

Solution. 

The answer is 1
2 2
n n +   ⋅      

.  

To prove it we define some terms. We suppose that the chips are numbered 1, 2, ..., n and 
initially arranged so that their numbers increase clockwise. A place is a point where a chip 
stands; its number is the number of the chip standing there in the initial arrangement. We can 
describe an arrangement by a sequence of numbers of the chips standing on the places 1, 2, ..., n.  
 

We say that k-th chip is moved clockwise if it is exchanged with its neighbour in 
clockwise direction, and counterclockwise if it is exchanged with its neighbour in 
counterclockwise direction.  
 

I. The example of 1
2 2
n n +   ⋅      

 steps giving the desired arrangement is constructed as 

follows: for every k = 1
2

n + 
  

, 1 1
2

n +  −  
, …, 2, 1 the k-th chip is moved clockwise 

2
n 
  

 times. 

When k-th chip is moved 
2
n 
  

 times, the arrangement is 1, 2, 1k − , 1 1
2

n +  +  
, 1 2

2
n +  +  

, …, 

n, k, k+1, …, 1
2

n + 
  

. When we finally move the first chip, the desired arrangement is reached.  

II. To prove this number is minimum, we define total shift of every chip as follows: it is 
0 in the initial position and increases or decreases by 1 when a chip moves clockwise or 
counterclockwise, respectively.  

When two chips are exchanged, their total shifts are changed by 1 and 1− , therefore the 
sum of total shifts of all the chips is 0. Note that absolute value of total shift of every chip in the 

final arrangement is at least 
2
n 
  

. Obviously there are at least 1
2

n + 
  

 chips with total shift of 

the same sign. These chips together moved at least 1
2 2
n n +   ⋅      

 in the same direction. But only 

one chip is moved in this direction at each step, therefore the number of steps is at least 
1

2 2
n n +   ⋅      

, QED.  

 
 
 

Marking scheme: 
An example for even n  – 1 point;  
An example for odd n  – 1 point;  
The inequality for even n  – 2 points;  
The inequality for odd n  – 3 points.  



Problem No 6.  
 
 
 
 
 
 
 
 
 
 

Будем считать, что A B C∠ > ∠ > ∠ . Докажем, что 0 1180
2

OIH A∠ > − ∠ . Тогда, так как 

090A∠ < , то 0 01180 135
2

A− ∠ >  и следовательно 0135OIH∠ > . В треугольнике ABC  

проведем высоты 1AA  и 1CC . Так как 0 0
190 90OAB C B BAA∠ = −∠ > −∠ = ∠  и 

0 0
190 90OCA B A ACC∠ = −∠ > −∠ = ∠ , точка O  находится внутри треугольника 1A HC . 

Заметим, что 0
1 90BAA OAC B∠ = ∠ = −∠  и 0

1 90ACC OCB A∠ = ∠ = −∠ . Следовательно, 
HAI IAO∠ = ∠  и HCI ICO∠ = ∠ . Пусть прямые AI  и CI  пересекают отрезок HO  в 

точках E  и F  соответствено, 2C – середина стороны AB  и K – точка пересечения 

прямых 2OC  и AI . Так как HE AH HC HC HF
EO AO AO CO FO

= < = =  и прямые CI  и 2OC  

пересекаются на описанной окружности треугольника ABC , точка I  находится на 
отрезке EK .  

Если 060B∠ ≥ , то 0 0190 180
2

AIC B B AHC∠ = + ∠ ≥ −∠ = ∠ . Заметим, что точка I  

находится внутри окружности, проходящей через точки A , H  и C . Тогда 
090AIH ACH A∠ > ∠ = −∠  и 

0 01 190 180
2 2

OIH OIA AIH OKA AIH A AIH A∠ = ∠ +∠ > ∠ +∠ = + ∠ +∠ > − ∠ . 

Значит 0 1180
2

OIH A∠ > − ∠ .  

 Если 060B∠ < , то 0 190 2
2

AIC B B AOC∠ = + ∠ > ∠ = ∠ . Следовательно, точка I  

находится внутри окружности, проходящей через точки A , O  и C . Заметим, что 
1
2

IOA C∠ < ∠ . Тогда   0180OIA IAO IOA∠ = −∠ −∠ =  

( ) ( )0 0 01 1 1 1180 180 180
2 2 2 2

B C IOA B C C B= − ∠ −∠ −∠ > − ∠ −∠ − ∠ = − ∠ .  

Значит 0 1180
2

OIA B∠ > − ∠  и 0 01 1180 180
2 2

OIH OIA B A∠ > ∠ > − ∠ > − ∠ . 

Следовательно, 0 1180
2

OIH A∠ > − ∠ .  

Замечание. Эту оценку улучшить нельзя, так как при 090A∠ = , 090B∠ →  имеем 

( ) 01 45
2

IAO B C∠ = ∠ −∠ → , 00IOA∠ →  и тогда 0135OIH OIA∠ = ∠ → .   

Fig. 3 C2 
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English version:  
(1). Assume without loss of generality that A B C∠ > ∠ > ∠ . We will prove that  

0 1180
2

OIH A∠ > − ∠  and it follows from 090A∠ <  and 0 01180 135
2

A− ∠ > , that 
0135OIH∠ > . Let 1AA  ( 1AA BC∈ ) and 1CC  ( 1CC AB∈ ) be altitudes of ABC∆ . The 

conditions 0 0
190 90OAB C B BAA∠ = −∠ > −∠ = ∠  and 

0 0
190 90OCA B A ACC∠ = −∠ > −∠ = ∠  imply that O  is an interior point of 1A HC∆ . Note, 

that 0
1 90BAA OAC B∠ = ∠ = −∠  and 0

1 90ACC OCB A∠ = ∠ = −∠ . Then HAI IAO∠ = ∠  and 
HCI ICO∠ = ∠ . Let E  and F  be the common points of the lines AI  and CI  and the 

segment HO q respectively. Let also 2C  be the midpoint of the side AB  and K  be the 

common point of the lines 2OC  and AI . Since HE AH HC HC HF
EO AO AO CO FO

= < = =  and the 

common point of the lines CI  and 2OC  lies on the circumcircle of ABC∆ , the point I  is in 
the segment EK . We consider 2 cases.   

(2). If 060B∠ ≥ , then 0 0190 180
2

AIC B B AHC∠ = + ∠ ≥ −∠ = ∠ . Note, that I  is an 

interior point of the circle through A , H  and C . Then 090AIH ACH A∠ > ∠ = −∠  and 
0 01 190 180

2 2
OIH OIA AIH OKA AIH A AIH A∠ = ∠ +∠ > ∠ +∠ = + ∠ +∠ > − ∠ . 

Thus, 0 1180
2

OIH A∠ > − ∠ .  

 (3). If 060B∠ < , then 0 190 2
2

AIC B B AOC∠ = + ∠ > ∠ = ∠ . It follows that I  is an 

interior  point of the circle through A , O  and C . Note, that 1
2

IOA C∠ < ∠ . Then   
0180OIA IAO IOA∠ = −∠ −∠ =  

( ) ( )0 0 01 1 1 1180 180 180
2 2 2 2

B C IOA B C C B= − ∠ −∠ −∠ > − ∠ −∠ − ∠ = − ∠ .  

It follows that 0 1180
2

OIA B∠ > − ∠  and 0 01 1180 180
2 2

OIH OIA B A∠ > ∠ > − ∠ > − ∠ . Thus, 

0 1180
2

OIH A∠ > − ∠ .  

 
Remark. The estimation could not be improved because if 090A∠ =  and 090B∠ → , then 

( ) 01 45
2

IAO B C∠ = ∠ −∠ → , 00IOA∠ →  and it follows that 0135OIH OIA∠ = ∠ → . 

 
Marking scheme: 

(1)  – (2 points); 
(2) or (3) – 3 points;  
(2) + (3) – 5 points if the proofs are correct.  
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