Problem 4. A quadratic trinomial p(x) with real coefficients is given. Prove that there is a positive integer *n* such that the equation $p(x) = \frac{1}{n}$ has no rational roots.

Solution. Assume that a quadratic trinomial $p(x) = ax^2 + bx + c$ gets all the values of the form $\frac{1}{n}$ at rational points. It is easy to see that the coefficients a, b, c are rational. Indeed, if $p(r_i) = \frac{1}{n_i}$ for i=1, 2, 3, where r_i are rational, then the numbers $a(r_1 + r_2) + b = \frac{p(r_2) - p(r_1)}{r_2 - r_1}$ and $a(r_2 + r_3) + b = \frac{p(r_3) - p(r_2)}{r_3 - r_2}$ are also rational, and so is their difference $a(r_1 - r_3)$. It follows immediately that a, and therefore b and c are rational.

If a,b,c are represented as irreducible fractions there is a prime q that does not divide their denominators and numerators. When a rational r is written as an irreducible fraction $\frac{m}{n}$ and q^k , k>0, is the maximum power of q dividing n, the denominator of irreducible fraction equal to $p(r) = ar^2 + br + c = \frac{am^2 + bmn + cn^2}{n^2}$ is divisible by q^{2k} and not by q^{2k+1} . Therefore p(r) cannot be equal to $\frac{1}{q^s}$ for any odd s. Since q does not divide the denominators of a,b,c, for n not divisible by q the equation $p\left(\frac{m}{n}\right) = \frac{1}{q^s}$ is also impossible.

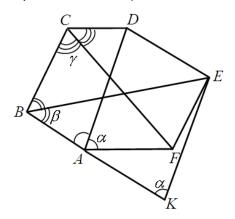
Thus $n = q^s$ satisfies the condition for any odd *s*.

Problem 5. Given convex hexagon *ABCDEF* with $AB \square DE$, $BC \square EF$, $CD \square FA$. The distance between the lines *AB* and *DE* is equal to the distance between the lines *BC* and *EF* and to the distance between the lines *CD* and *FA*. Prove that the sum AD + BE + CF does not exceed the perimeter of hexagon *ABCDEF*.

Solution. First we prove the following statement

Lemma. Under the conditions of problem, $AD^2 = (AB + DE)(FA + CD)$.

Indeed the point *D* is equidistant to the lines *AB* and *FA*. Hence $\angle BAD = \angle FAD$. Since $AB \square DE$, $CD \square FA$ we see that $\angle BAD = \angle FAD = \angle ADE = \angle ADC$. Similarly, $\angle ABE = \angle CBE = \angle FEB = \angle DEB$ and $\angle BCF = \angle DCF = \angle CFA = \angle CFE$. Let $\angle BAD = \alpha$, $\angle ABE = \beta$ and $\angle BCF = \gamma$.



Since the sum of all internal angles of the hexagon equal to 720° we have $\alpha + \beta + \gamma = 180^{\circ}$.

Consider a parallelogram *ADEK*. Clearly BK = BA + AK = BA + DE, KE = AD, $\angle AKE = \angle BAD = \alpha$, $\angle KBE = \angle ABE = \beta$, $\angle BEK = \gamma$.

Therefore, the triangles with sides AD, AB + DE, BE and FA + CD, AD, CF are similar. This implies that $AD^2 = (AB + DE)(FA + CD)$.

From Lemma, we get the following inequality:

$$AD = \sqrt{(AB + DE)(FA + CD)} \le \frac{AB + DE + FA + CD}{2}$$

Similarly,

$$BE \leq \frac{AB + BC + EF + ED}{2}, \ CF \leq \frac{BC + CD + EF + FA}{2}.$$

From these three inequalities we obtain

 $AD + BE + CF \le AB + BC + CD + DF + EF + FA$

Problem 6. A 10×10 table consists of 100 unit cells. A *block* is a 2×2 square consisting of 4 unit cells of the table. A set *C* of *n* blocks covers the table (i.e. each cell of the table is covered by some block of *C*) but no n-1 blocks of *C* cover the table. Find the largest possible value of *n*.

Solution. Consider an infinite table divided into unit cells. Any 2×2 square consisting of 4 unit cells of the table we also call a *block*.

Fix arbitrary finite set *M* of blocks lying on the table. Now we will consider arbitrary finite sets of unit cells of the table covered by *M*. For any such set Φ denote by $|\Phi|$ the least possible number of blocks of *M* that cover all cells from Φ .

We have the following properties.

- 1°. If $\Phi_1 \subseteq \Phi_2$ then $|\Phi_1| \leq |\Phi_2|$.
- 2° . $|\Phi_1 \cup \Phi_2| \le |\Phi_1| + |\Phi_2|$.

3°. For the set *A* shown in the Fig.1, we have |A| = 2; for the set *B* shown in the Fig.2, we have |B| = 3.

4°. Let *C* be any rectangle 3×6 of the table. Then $|C| \le 10$.

This estimate is proved by consideration of different ways in which the cells X and Y (see Fig.3-8) can be covered by the blocks of M.

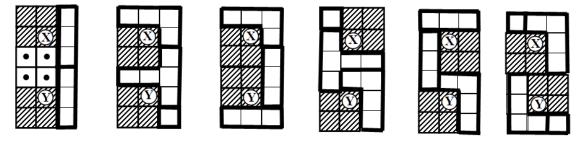
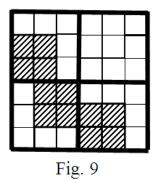


Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8For this figures we have , respectively, the following estimates:Fig. 3 : Case 1) $|C| \le 2+2+3+1+1$ or Case 2) $|C| \le 1+1+1+1+1+1+1+1$;Fig. 4 : $|C| \le 3+3+1+1+1$;

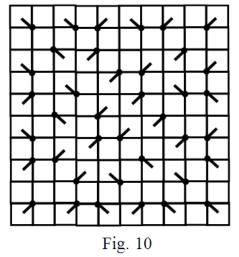
Fig. 5: $|C| \le 2+2+3+1+1$; Fig. 6: $|C| \le 3+3+1+1+1$; Fig. 7: $|C| \le 2+2+3+1+1$; Fig. 8: $|C| \le 3+3+1+1+1+1$.

Remark 1. In the Fig 3. the first case means that the four marked cells are covered by at most 3 blocks; the second case means that the marked cells are covered by 4 different blocks. *Remark 2.* The Fig 8. presents the only case where |C| can attain the value 10; in all other figures we have in fact $|C| \le 9$.

5°. Let *D* be any 6×6 square of the table. From previous properties it follows that $|D| \le 20$. We claim that in fact $|D| \le 19$. This easily follows from the Fig.9 and remark 2 (using two different ways of dividing *D* into 2 rectangles 3×6).



Now we can finish the solution of the problem. Let *E* be given 10×10 table, *D* be its central 6×6 square. We have $|D| \le 19$. One can easily verify that $|E \setminus D| \le 20$ (applying the properties 1°-4°). So, $|E| \le |D| + |E \setminus D| \le 19 + 20 = 39$. On the other hand, Fig.10 shows that n = 39 can be attained.



In this Fig. the marked points are the centers of blocks participating in the covering. For convenience we marked by half-diagonals those unit cells wich are covered by the only block.