Problem 4. A quadratic trinomial $p(x)$ with real coefficients is given. Prove that there is a positive integer n such that the equation $p(x)=\frac{1}{n}$ has no rational roots.
Solution. Assume that a quadratic trinomial $p(x)=a x^{2}+b x+c$ gets all the values of the form $\frac{1}{n}$ at rational points. It is easy to see that the coefficients a, b, c are rational. Indeed, if $p\left(r_{i}\right)=\frac{1}{n_{i}}$ for $i=1,2$, 3, where r_{i} are rational, then the numbers $a\left(r_{1}+r_{2}\right)+b=\frac{p\left(r_{2}\right)-p\left(r_{1}\right)}{r_{2}-r_{1}}$ and $a\left(r_{2}+r_{3}\right)+b=\frac{p\left(r_{3}\right)-p\left(r_{2}\right)}{r_{3}-r_{2}}$ are also rational, and so is their difference $a\left(r_{1}-r_{3}\right)$. It follows immediately that a, and therefore b and c are rational.

If a, b, c are represented as irreducible fractions there is a prime q that does not divide their denominators and numerators. When a rational r is written as an irreducible fraction $\frac{m}{n}$ and q^{k}, $k>0$, is the maximum power of q dividing n, the denominator of irreducible fraction equal to $p(r)=a r^{2}+b r+c=\frac{a m^{2}+b m n+c n^{2}}{n^{2}}$ is divisible by $q^{2 k}$ and not by $q^{2 k+1}$. Therefore $p(r)$ cannot be equal to $\frac{1}{q^{s}}$ for any odd s. Since q does not divide the denominators of a, b, c, for n not divisible by q the equation $p\left(\frac{m}{n}\right)=\frac{1}{q^{s}}$ is also impossible.
Thus $n=q^{s}$ satisfies the condition for any odd s.
Problem 5. Given convex hexagon $A B C D E F$ with $A B \square D E, B C \square E F, C D \square F A$. The distance between the lines $A B$ and $D E$ is equal to the distance between the lines $B C$ and $E F$ and to the distance between the lines $C D$ and $F A$. Prove that the sum $A D+B E+C F$ does not exceed the perimeter of hexagon $A B C D E F$.
Solution. First we prove the following statement
Lemma. Under the conditions of problem, $A D^{2}=(A B+D E)(F A+C D)$.
Indeed the point D is equidistant to the lines $A B$ and $F A$. Hence $\angle B A D=\angle F A D$. Since $A B \square D E, \quad C D \square F A \quad$ we see that $\angle B A D=\angle F A D=\angle A D E=\angle A D C$. Similarly, $\angle A B E=\angle C B E=\angle F E B=\angle D E B$ and $\angle B C F=\angle D C F=\angle C F A=\angle C F E$.

Let $\angle B A D=\alpha, \angle A B E=\beta$ and $\angle B C F=\gamma$.

Since the sum of all internal angles of the hexagon equal to 720° we have $\alpha+\beta+\gamma=180^{\circ}$.

Consider a parallelogram $A D E K$. Clearly $B K=B A+A K=B A+D E, \quad K E=A D$, $\angle A K E=\angle B A D=\alpha, \angle K B E=\angle A B E=\beta, \angle B E K=\gamma$.
Therefore, the triangles with sides $A D, A B+D E, B E$ and $F A+C D, A D, C F$ are similar. This implies that $A D^{2}=(A B+D E)(F A+C D)$.
From Lemma, we get the following inequality:

$$
A D=\sqrt{(A B+D E)(F A+C D)} \leq \frac{A B+D E+F A+C D}{2}
$$

Similarly,

$$
B E \leq \frac{A B+B C+E F+E D}{2}, C F \leq \frac{B C+C D+E F+F A}{2} .
$$

From these three inequalities we obtain

$$
A D+B E+C F \leq A B+B C+C D+D F+E F+F A
$$

Problem 6. A 10×10 table consists of 100 unit cells. A block is a 2×2 square consisting of 4 unit cells of the table. A set C of n blocks covers the table (i.e. each cell of the table is covered by some block of C) but no $n-1$ blocks of C cover the table. Find the largest possible value of n.
Solution. Consider an infinite table divided into unit cells. Any 2×2 square consisting of 4 unit cells of the table we also call a block.

Fix arbitrary finite set M of blocks lying on the table. Now we will consider arbitrary finite sets of unit cells of the table covered by M. For any such set Φ denote by $|\Phi|$ the least possible number of blocks of M that cover all cells from Φ.

We have the following properties.
1°. If $\Phi_{1} \subseteq \Phi_{2}$ then $\left|\Phi_{1}\right| \leq\left|\Phi_{2}\right|$.
2°. $\left|\Phi_{1} \cup \Phi_{2}\right| \leq\left|\Phi_{1}\right|+\left|\Phi_{2}\right|$.
3°. For the set A shown in the Fig.1, we have $|A|=2$; for the set B shown in the Fig.2, we have $|B|=3$.

Fig. 1

Fig. 2
4°. Let C be any rectangle 3×6 of the table. Then $|C| \leq 10$.
This estimate is proved by consideration of different ways in which the cells X and Y (see Fig.3-8) can be covered by the blocks of M.

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

For this figures we have, respectively, the following estimates:
Fig. 3 : Case 1) $|C| \leq 2+2+3+1+1$ or Case 2) $|C| \leq 1+1+1+1+1+1+1+1$;
Fig. 4 : $|C| \leq 3+3+1+1+1$;

Fig. $5:|C| \leq 2+2+3+1+1$;
Fig. 6 : $|C| \leq 3+3+1+1+1$;
Fig. 7: $|C| \leq 2+2+3+1+1$;
Fig. 8 : $|C| \leq 3+3+1+1+1+1$.
Remark 1. In the Fig 3. the first case means that the four marked cells are covered by at most 3 blocks; the second case means that the marked cells are covered by 4 different blocks.
Remark 2. The Fig 8. presents the only case where $|C|$ can attain the value 10 ; in all other figures we have in fact $|C| \leq 9$.
5°. Let D be any 6×6 square of the table. From previous properties it follows that $|D| \leq 20$. We claim that in fact $|D| \leq 19$. This easily follows from the Fig. 9 and remark 2 (using two different ways of dividing D into 2 rectangles 3×6).

Fig. 9
Now we can finish the solution of the problem. Let E be given 10×10 table, D be its central 6×6 square. We have $|D| \leq 19$. One can easily verify that $|E \backslash D| \leq 20$ (applying the properties $1^{\circ}-4^{\circ}$). So, $|E| \leq|D|+|E \backslash D| \leq 19+20=39$. On the other hand, Fig. 10 shows that $n=39$ can be attained.

Fig. 10
In this Fig. the marked points are the centers of blocks participating in the covering. For convenience we marked by half-diagonals those unit cells wich are covered by the only block.

