Problem 1. Given a trapezoid $A B C D(A D \square B C)$ with $\angle A B C>90^{\circ}$. Point M is chosen on the lateral side $A B$. Let O_{1} and O_{2} be the circumcenters of the triangles $M A D$ and $M B C$ respectively. The circumcircles of the triangles $M O_{1} D$ and $M O_{2} C$ meet again at the point N. Prove that the line $O_{1} O_{2}$ passes through the point N.
Solution.

We have $\angle M O_{2} C=360^{\circ}-2 \angle M B C=2 \angle M A D=\angle M O_{1} D$, hence $\Delta M O_{1} D \square \triangle M O_{2} C$. It follows that

$$
\begin{equation*}
\frac{M C}{M D}=\frac{M O_{2}}{M O_{1}} \tag{1}
\end{equation*}
$$

and $\angle C M O_{2}=\angle O_{1} M D$.
Therefore

$$
\begin{equation*}
\angle O_{1} M O_{2}=\angle D M C . \tag{2}
\end{equation*}
$$

From (1) and (2) we get

$$
\begin{equation*}
\Delta O_{1} M O_{2} \square \Delta D M C . \tag{3}
\end{equation*}
$$

Let the lines $O_{1} O_{2}, C D$ intersect at point K.
From (3) it follows that $\angle M O_{1} K=\angle M D K$. Hence the points M, O_{1}, D, K lie on the same circle. Thus $\angle C M O_{2}=\angle O_{1} M D=\angle O_{1} K D$.
So, $\angle C M O_{2}=\angle O_{2} K C$, i.e. the points M, O_{2}, C, K lie on the same circle.
It means that the points K and N coincide, i.e. the line $O_{1} O_{2}$ passes through the point N.
Problem 2. Find all odd positive integers $n>1$ such that there is a permutation $a_{1}, a_{2}, \ldots, a_{n}$ of the numbers $1,2, \ldots, n$, where n divides one of the numbers $a_{k}^{2}-a_{k+1}-1$ and $a_{k}^{2}-a_{k+1}+1$ for each $k, 1 \leq k \leq n$ (we assume $a_{n+1}=a_{1}$).
Solution 1. Since $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=\{1,2, \ldots, n\}$ we conclude that $a_{i}-a_{j}$: n only if $i=j$.
From the problem conditions it follows that

$$
\begin{equation*}
a_{k+1}=a_{k}^{2}+\varepsilon_{k}-n b_{k}, \tag{1}
\end{equation*}
$$

where $b_{k} \in Z$ and $\varepsilon_{k}= \pm 1$. We have $a_{k+1}-a_{l+1}=\left(a_{k}-a_{l}\right)\left(a_{k}+a_{l}\right)+\left(\varepsilon_{k}-\varepsilon_{l}\right)-n\left(b_{k}-b_{l}\right)$.

It follows that if $a_{k}+a_{l}=n$ then $\varepsilon_{k} \neq \varepsilon_{l}$ otherwise $a_{k+1}-a_{l+1} \vdots n$ - contradiction.
The condition $\varepsilon_{k} \neq \varepsilon_{l}$ means that $\varepsilon_{k}=-\varepsilon_{l}$.
Further, one of the a_{i} equals n. Let, say, $a_{m}=n$. Then the set $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \backslash\left\{a_{m}\right\}$ can be divided into $\frac{n-1}{2}$ pairs $\left(a_{k}, a_{l}\right)$ such that $a_{k}+a_{l}=n$. For any such pairs of indicies k, l we have $\varepsilon_{k}+\varepsilon_{l}=0$.
Now add all the equalities (1) for $k=1,2, \ldots, n$. Then $\sum_{k=2}^{n+1} a_{k}=\sum_{k=1}^{n} a_{k}^{2}-n \sum_{k=1}^{n} b_{k}+\varepsilon_{m}$, or $1+2+\ldots+n=1^{2}+2^{2}+\ldots+n^{2}-n \sum_{k=1}^{n} b_{k}+\varepsilon_{m}$ whence

$$
\begin{equation*}
n \sum_{k=1}^{n} b_{k}=\frac{n(n+1)(2 n+1)}{6}-\frac{n(n+1)}{2}+\varepsilon_{m}=\frac{n(n+1)(n-1)}{3}+\varepsilon_{m} . \tag{2}
\end{equation*}
$$

Note that if n is not divisible by 3 then the number $\frac{n(n+1)(n-1)}{3}$ is divisible by n (since $\frac{(n+1)(n-1)}{3}$ is integer). It follows from (2) that $\varepsilon_{m} \vdots n$ which is impossible.

Hence n is divisible by 3 and from (2) it follows that ε_{m} is divisible by the number $\frac{n}{3}$.
The latter is possible only for $n=3$ because $\varepsilon_{m}= \pm 1$. It remains to verify that $n=3$ satisfies the problem conditions. Indeed, let $a_{1}=1, a_{2}=2, a_{3}=3$. Then $a_{1}^{2}-a_{2}+1=0 \vdots 3, a_{2}^{2}-a_{3}-1=0 \vdots 3$ and $a_{3}^{2}-a_{1}+1=9 \vdots$.

Solution 2. Suppose that $a_{1}, a_{2}, \ldots, a_{n}$ is the desired sequence of residues modulo n, and let $f\left(a_{i}\right)=a_{i+1}$ (for $i=n$ we take $f\left(a_{n}\right)=a_{1}$).

The mapping f thus defined is a bijection. We have either $f(x) \equiv x^{2}+1(\bmod n)$ or $f(x) \equiv x^{2}-1(\bmod n)$. If $x^{2} \equiv y^{2} \equiv z^{2}(\bmod n)$ then there are at most two different residues among $f(x), f(y), f(z)$, which is impossible. On the other hand, $f(x) \equiv f(-x)(\bmod n)$, therefore, if $x^{2} \equiv y^{2}(\bmod n)$ then either $x \equiv \pm y(\bmod n)$ or there is 0 among x and y. It follows that n cannot have two different prime factors (if it has, we can find x and y not divisible by n such that n divides $(x+y)(x-y))$. Furthermore, n cannot be divisible by a square of prime: if p^{2} divides n then $0^{2} \equiv\left(\frac{n}{p}\right)^{2} \equiv\left(\frac{2 n}{p}\right)^{2} \equiv 0(\bmod n)$. Thus n is prime.

We arrange all residues modulo $n=2 k+1$ on a circle in the natural order $0,1, \ldots, n-1$; there are $k+1$ squares and k non-squares among them.

Every residue must have a neighbouring square, therefore, there are no non-squares with difference 2. If $a^{2}-b^{2} \equiv 2(\bmod n)$, i.e. $a^{2}-1 \equiv b^{2}+1(\bmod n)$, then $f(a), f(-a), f(b), f(-b)$ have only three possible values, and either a or b is 0 . Thus every group of consecutive squares contains two residues (with only possible exception when it contains three, and 0 stands on the outside), and every group of consecutive non-squares contains two residues (with only possible exception when it contains only one next to 0). Since the number of squares exceeds that of nonsquares by 1 , exactly one of the two exceptions takes place.

In the first case $0,1,2$ are squares, and 3,4 are non-squares, a contradiction.
In the second case all the residues of the form $4 k<n$ and $4 k+1<n$ are squares and the rest are non-squares. For $n>6$ this means that $2,3,6$ are non-squares which is impossible (since a
non-square multiplied by non-zero square is a non-square, the product of two non-squares must be a square).

Thus $n \leq 5$. Immediate calculation shows that $n=3$.

Problem 3. Let $a, b, c, d>0$ and $a b c d=1$. Prove that

$$
\frac{(a-1)(c+1)}{1+b c+c}+\frac{(b-1)(d+1)}{1+c d+d}+\frac{(c-1)(a+1)}{1+a d+a}+\frac{(d-1)(b+1)}{1+a b+b} \geq 0 .
$$

Solution 1. It's easy to see that the needed inequality is equivalent to following one

$$
\begin{equation*}
\frac{a c+a+b c}{1+b c+c}+\frac{b d+b+c d}{1+c d+d}+\frac{a c+c+a d}{1+a d+a}+\frac{d b+d+a b}{1+a b+b} \geq 4 . \tag{1}
\end{equation*}
$$

Since
$a c+a+b c=\frac{(c+1)^{2}}{\frac{c+1}{a}}+\frac{(b c)^{2}}{b c} \geq \frac{(c+1+b c)^{2}}{\frac{c+1}{a}+b c}=\frac{a d(c+1+b c)^{2}}{c d+d+1}$,
or $\quad \frac{a c+a+b c}{1+b c+c} \geq \frac{a d(c+1+b c)}{c d+d+1}$.
Hence
$\frac{a c+a+b c}{1+b c+c}+\frac{b d+b+c d}{1+c d+d}+\frac{a c+c+a d}{1+a d+a}+\frac{d b+d+a b}{1+a b+b} \geq$
$\geq \frac{a d(c+1+b c)}{c d+d+1}+\frac{b a(d+1+c d)}{d a+a+1}+\frac{c b(a+1+d a)}{a b+b+1}+\frac{d c(b+1+a b)}{b c+c+1} \geq$
$\geq 4 \sqrt[4]{\frac{a d(c+1+b c)}{c d+d+1} \cdot \frac{b a(d+1+c d)}{d a+a+1} \cdot \frac{c b(a+1+d a)}{a b+b+1} \cdot \frac{d c(b+1+a b)}{b c+c+1}}=4$.
QED.

Solution 2.

Since $a b c d=1$, there exist positive real numbers x, y, z, t, such that $a=\frac{x}{y}, b=\frac{y}{z}, c=\frac{z}{t}, d=\frac{t}{x}$.
Then inequality can be rewritten in the form

$$
\frac{(x-y)(z+t)}{y(y+z+t)}+\frac{(y-z)(x+t)}{z(z+x+t)}+\frac{(z-t)(x+y)}{t(z+x+y)}+\frac{(t-x)(y+z)}{x(x+y+z)} \geq 0
$$

or, equivalently,
$\frac{x(z+t)+y^{2}}{y(z+t)+y^{2}}+\frac{y(x+t)+z^{2}}{z(x+t)+z^{2}}+\frac{z(x+y)+t^{2}}{t(x+y)+t^{2}}+\frac{t(y+z)+x^{2}}{x(y+z)+x^{2}} \geq 4$.
Notice that by Cauchy-Bunyakovsky inequality $\left(x(z+t)+y^{2}\right)\left(\frac{z+t}{x}+1\right) \geq(z+t+y)^{2}$
or $\frac{x(z+t)+y^{2}}{y(z+t)+y^{2}} \geq \frac{x(z+t+y)}{y(z+t+x)}$.
(Equality occurs iff $x=y$.)
Now, writing similar inequalities for other terms we obtain

$$
\begin{aligned}
& \frac{x(z+t)+y^{2}}{y(z+t)+y^{2}}+\frac{y(x+t)+z^{2}}{z(x+t)+z^{2}}+\frac{z(x+y)+t^{2}}{t(x+y)+t^{2}}+\frac{t(y+z)+x^{2}}{x(y+z)+x^{2}} \geq \\
& \geq \frac{x(z+t+y)}{y(z+t+x)}+\frac{y(x+t+z)}{z(x+t+y)}+\frac{z(x+y+t)}{t(x+y+z)}+\frac{t(y+z+x)}{x(y+z+t)} \geq \\
& \geq 4 \sqrt[4]{\frac{x(z+t+y)}{y(z+t+x)} \frac{y(x+t+z)}{z(x+t+y)} \frac{z(x+y+t)}{t(x+y+z)} \frac{t(y+z+x)}{x(y+z+t)}}=4
\end{aligned}
$$

Equality holds iff $x=y=z=t$ i.e. $a=b=c=d=1$.

