Problem 1. Given a trapezoid ABCD (AD[BC) with ZABC >90°. Point M is chosen on the
lateral side AB. Let O, and O, be the circumcenters of the triangles MAD and MBC
respectively. The circumcircles of the triangles MO,D and MO,C meet again at the point N .
Prove that the line 0,0, passes through the point N .

Solution.

We have ZMO,C =360"-2/MBC =2£ZMAD = ZMO,D , hence AMO,D [l AMO,C .
It follows that

VeV )
MD MO,
and ZCMO, = ZO,MD.
Therefore
Z0,M0O, = ZDMC. (2)
From (1) and (2) we get
AO,MO, [1 ADMC . (3)

Let the lines O,0,,CD intersect at point K .
From (3) it follows that /MO,K = ZMDK . Hence the points M,0,, D, K lie on the same circle.
Thus ZCMO, = ZO,MD = ZO,KD.
So, ZCMO, = £0O,KC, i.e. the points M,0,,C,K lie on the same circle.
It means that the points Kand N coincide, i.e. the line O,0, passes through the point N .
Problem 2. Find all odd positive integers n>1 such that there is a permutation a,,a,,...,a, of
the numbers 1,2,...,n, where n divides one of the numbers a; —a_, -1 and a’ —a, , +1 for
each k,1<k <n (we assume a,,, =a,).
Solution 1. Since {a,,a,,...,a,}={L 2,...,n} we conclude that &, —a;:n only if i= j.
From the problem conditions it follows that

8., =& +& —nb, 1)
where b, eZ and ¢ =+1. Wehave a, ,—a,,,=(a, —a,)(a, +a )+(s —&)—-n, -b).



It follows that if a, +a, =n then g, = ¢ otherwise a, , —a,,,:n - contradiction.
The condition g, # ¢, means that &, =—¢, .
Further, one of the a, equals n. Let, say, a, =n. Thenthe set {a,4a,,...,a,}\{a,} can

be divided into nT—l pairs (a,,a,) such that a, +a, =n. Forany such pairs of indicies k,| we
have ¢, +¢ =0.

n+1

Now add all the equalities (1) for k =1,2,...,n. Then >’a =>"a’-n> b +¢,, or
k=2 k=1 k=1

n
1+2+..+n=2+2"+_.+n*-n) b +¢, whence
k=1

o nh(n+)@2n+1) n(n+1) _n(n+1)(n-1)
nkzz;bk = 5 5 +&, == +&,. (2)

n(n+1)(n-1)

Note that if n is not divisible by 3 then the number is divisible by n (since

(n+H(n-1) is integer). It follows from (2) that ¢, :n which is impossible.

Hence n is divisible by 3 and from (2) it follows that ¢, is divisible by the number %

The latter is possible only for n=3 because ¢, =+1. It remains to verify that n =3 satisfies the
problem conditions. Indeed, let a, =1,a, =2,a,=3. Then a’ —a, +1=0:3, a; -a, —~1=0:3 and
al-a, +1=9:3.

Solution 2. Suppose that a ,a,,...,a, is the desired sequence of residues modulo n, and let
f(a)=4a, (fori=n wetake f(a,)=4a).

The mapping f thus defined is a bijection. We have either f(x)=x*+1(mod n) or
f(x)=x*—1(mod n) . If x*=y®=z?(mod n) then there are at most two different residues
among f(x), f(y), f(z), which is impossible. On the other hand, f(x)= f(-x)(mod n) ,
therefore, if x*> = y*(mod n) then either x =+y(mod n) or there is 0 among x and y. It follows

that n cannot have two different prime factors (if it has, we can find x and y not divisible by n

such that n divides (x+y)(x-y)). Furthermore, n cannot be divisible by a square of prime: if
2 2

p®divides n then 0% = (%J = (2—;] =0(mod n) . Thusn is prime.

We arrange all residues modulo n=2k+1 on a circle in the natural order 0, 1, ..., n-1; there
are k+1 squares and k non-squares among them.

Every residue must have a neighbouring square, therefore, there are no non-squares with
difference 2. If a®—b*>=2(mod n) , i.e. a*—1=b*+1(mod n) , then f(a), f(-a), f(b), f(-b) have
only three possible values, and either a or b is 0. Thus every group of consecutive squares
contains two residues (with only possible exception when it contains three, and 0 stands on the
outside), and every group of consecutive non-squares contains two residues (with only possible
exception when it contains only one next to 0). Since the number of squares exceeds that of non-
squares by 1, exactly one of the two exceptions takes place.

In the first case 0, 1, 2 are squares, and 3, 4 are non-squares, a contradiction.

In the second case all the residues of the form 4k<n and 4k+1<n are squares and the rest
are non-squares. For n>6 this means that 2, 3, 6 are non-squares which is impossible (since a



non-square multiplied by non-zero square is a non-square, the product of two non-squares must
be a square).
Thus n <5. Immediate calculation shows that n=3.

Problem 3. Let a,b,c,d >0 and abcd =1. Prove that
(a-D(c+1) N (b-1)(d +1) N (c-D(a+l) N (d-D(b+1) 0.
1+bc+c l+cd+d l+ad+a 1+ab+b
Solution 1. It’s easy to see that the needed inequality is equivalent to following one
ac+a+bc+ bd +b+cd +ac+c+ad +db+d +ab S

1+bc+c 1+cd+d 1+ad+a 1l+ab+b

(1)

Since
2 2 2 )
ac+a+bcz(i::11) +(bC) Z((:;lbe) _ ad(c+1+hc)
=z = bc T i be cd+d+1
a a
or ac+a+bc>ad(c+1+bc)
1+bc+c  cd+d+1
Hence

ac+a+bc bd+b+cd ac+c+ad db+d+ab>

+ + + >
l1+bc+c 1+4cd+d 1+ad+a 1l+ab+b
S ad(c+1+bc) N ba(d +1+cd) N cb(a+1+da) N dc(b+1+ab) S

cd+d+1 da+a+1 ab+b+1 bc+c+1
>44\/ad(c+1+bc)'ba(d +1+cd) cb(a+1l+da) dc(b+1+ab) _4
B cd+d+1 da+a+1 ab+b+1 bc+c+1
QED.
Solution 2.

Since abcd =1, there exist positive real numbers x,y, z,t, such that
azi,b:l,c:i,d _L .
y z t X
Then inequality can be rewritten in the form
(x=y)z+t) (y-D)x+t) E-Hx+y)  -0+2)
y(y+z+t)  z(z+x+t)  tz+x+y) X(xX+y+2)
or, equivalently,
X(z+t)+y? . y(x+1) + 2 L 2(x+ y)+t?  t(y+2)+x° o4
y(z+)+y"  z(x+0)+2°  t(x+y)+t® x(y+2)+ x>

2

Notice that by Cauchy-Bunyakovsky inequality (x(z+t)+ yz)(Z—HJrlj >(z+t+y)
X

o X(z+t+ y* _ X(z+t+y)
y(z+t)+y?  y(z+t+Xx)
(Equality occurs iff x=1y.)
Now, writing similar inequalities for other terms we obtain



X(z+)+y"  y(x+t)+2°  z(x+y)+t? t(y+2)+x° S

y(z+)+y  z(x+0)+2°  t(x+y)+t®  x(y+2)+x>

S x(z+t+y)+ y(x+t+z)+ Z(x+ y+t)+t(y+z+x) S
y(z+t+Xx) z(Xx+t+y) t(x+y+z) x(y+z+t)

S 44 X(Z+t+y) y(X+t+2) 2(X+y+t) t(y+2+X) _4
AN Y@z At X)) Z(X+t+y) X+ Y +2) X(Y+2Z+1)

Equality holds iff x=y=z=t i.e. a=b=c=d =1.



