Problem D. Segments

Input file:	standard input
Output file:	standard output
Time limit:	3 seconds
Memory limit:	40 megabytes

There is a multiset of segments S. Difference between multiset and set is that multiset allows multiple instances of one segment, unlike a set.

Given two integer numbers n and t. You have n operations of following types that are made over the multiset:

- 1. Insert segment [l, r] into the multiset S. The segment is assigned with id minimum positive integer number that was not assigned to any other segment before.
- 2. Erase the segment with assigned number id from the multiset S. It is guaranteed that at the moment of erasing there is a segment in the multiset S with assigned number id.
- 3. Count the number of segments from the multiset S that has at least k integer points in common with given segment [l, r].

Integer point x is common for both segments $[l_i, r_i]$ and $[l_j, r_j]$, if $l_i \leq x \leq r_i$ and $l_j \leq x \leq r_j$.

Input

The first line of input contains two integer numbers n and t $(1 \le n \le 2 \cdot 10^5, 0 \le t \le 1)$ – number of operations and constant number. Each of next n lines describes one query.

- 1. Queries of first type are given in following format: 1 $a_i b_i (0 \le a_i, b_i \le 2 \cdot 10^9)$.
- 2. Queries of second type are given in following format: 2 id_i $(1 \le id_i \le n)$.
- 3. Queries of third type are given in following format: 3 $a_i b_i k_i (0 \le a_i, b_i, k_i \le 2 \cdot 10^9)$.

Please note that end points of segments $[l_i, r_i]$ for queries of type 1 and 3 are **encoded**, in order to decode them you need to perform the following transformations:

$$l_i = (a_i \oplus (t * lastans))$$
 $r_i = (b_i \oplus (t * lastans))$

where lastans — last answer to the query of type 3 (initially *lastans* equals to 0). If it turned out that l_i is greater than r_i , you should swap the values of l_i and r_i .

It is guaranteed that there will be at least one query of type 3 in input.

Here \oplus denotes the bitwise XOR operation.

Consider that problem has **unusual memory limit**.

Output

For each query of type 3 print answer in separate line.

Scoring

This task contains six subtasks:

- 1. $n \leq 5 \cdot 10^3$. Scored 7 points.
- 2. $n \leq 10^5$. First comes queries of type 1, then of type 3 and there is no query of type 2. Scored 15 points.
- 3. $n \leq 2 \cdot 10^5$, $k_i = 1$ for all third type queries. Scored 16 points.
- 4. $n \leq 10^5, t = 0$. Scored 17 points.
- 5. $n \leq 10^5$. Scored 20 points.

6. $n \leq 2 \cdot 10^5$. Scored 25 points.

Examples

standard input	standard output
6 1	0
1 1 2	2
3 2 4 2	0
1 3 5	
3 2 3 1	
2 1	
3 0 3 1	
6 0	0
1 3 10	2
1 3 5	
3 6 10 6	
2 1	
1 3 10	
3 6 4 2	

Problem E. Nice sequence

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

At their leisure time Tima and Kanat play with sequences of integers. Tima considers a sequence *nice* if the sum of any N consecutive numbers of the sequence is negative and Kanat considers a sequence *nice* if the sum of any M consecutive numbers of the sequence is positive. If the sequence does not have N and/or M consecutive numbers, it is considered to be *nice* for Tima and/or Kanat respectively.

Find the sequence of **maximum** possible length that will be *nice* for both of them.

Input

The first line contains one integer $T(1 \le T \le 10)$ — the number of tests. In the next T lines there are two integers N and M, separated by space.

Output

For each test output 2 lines: in the first line output one integer K — maximum length of the sequence, which is *nice* for both Tima and Kanat. In the second line output K numbers separated by space the sequence itself. The numbers should not exceed 10^9 by absolute value and should be non-zero. It is guaranteed that it is possible to find a sequence of maximum length that satisfies above condition. When K = 0 second line should be empty.

Scoring

This task includes seven subtasks:

- 1. $1 \leq N, M \leq 100$, and max(N, M) is divisible by min(N, M). Score 6 points.
- 2. $1 \le N, M \le 10^4, \min(N, M) = 2$. Score 9 points.

3. $1 \le N, M \le 10$. Score 14 points.

- 4. $1 \le N, M \le 2 \cdot 10^5, |N M| \le 2$. Score 15 points.
- 5. $1 \leq N, M \leq 2000.$ Score 14 points.
- 6. $1 \le N, M \le 5 \cdot 10^4$. Score 18 points.
- 7. $1 \leq N, M \leq 2 \cdot 10^5.$ Score 24 points.

Example

standard input	standard output
3	2
3 1	1 2
2 3	3
1 1	3 -4 2
	0

Problem F. Birthday gift

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

Askhat received from NurlashKO rooted tree on his birthday as a gift with n vertexes, numbered from 1 to n. Tree — connected unoriented graph without any cycles. The tree root is a vertex with number 1. Vertex v is an ancestor of vertex u if v lies on the minimal path from u to the root. Lowest common ancestor of sequence of vertexes $(x_1, x_2, ..., x_k)$ — farthest vertex from root, which is an ancestor of x_i for all $1 \le i \le k$ $(lca(x_1, x_2, ..., x_k))$.

In addition to the gift, NurlashKO prepared a task for Askhat. At first, he reported a sequence with length $m - (a_1, a_2, ..., a_m)$, each number in the sequence is a vertex from the tree. There may be duplicates of vertexes in the sequence. Then he started asking q queries, each query is one of the two types:

- 1 pos v NurlashKO asks Askhat to change the value at position pos to the value v, i.e. $a_{pos} = v$.
- 2 l r v NurlashKO asks Askhat to find a pair (x, y), such that $l \leq x \leq y \leq r$ and $lca(a_x, a_{x+1}, ..., a_y) = v$. Or say that there is no such pair.

Askhat has spent a lot of time on researching the gift and now he wants your help.

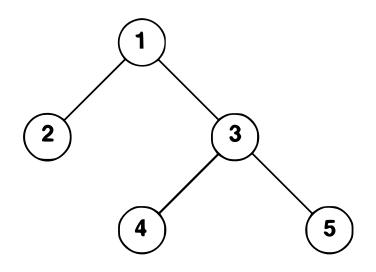
Input

First line of input contains three positive integer numbers n, m and q — size of the tree, length of the sequence and number of queries. Next n-1 lines contain edges of the tree (u_i, v_i) $(u_i \neq v_i)$. Next line contains m integer numbers, $a_1, a_2, ..., a_m$. $(1 \leq a_i \leq n)$ — sequence, which was gifted to Askhat by NurlashKO. Each of the next q lines describes a query. If first number of query equals to 1, then it is followed by two numbers pos and v $(1 \leq pos \leq m, 1 \leq v \leq n)$ — query of first type. If first number of query equals to 2, then it is followed by three numbers l, r and v $(1 \leq l \leq r \leq m, 1 \leq v \leq n)$ — query of second type. It is guaranteed that among q queries at least one is of second type.

Output

Print two numbers x and y — answer to each query of second type, if there is no solution print out "-1 -1" (without quotes). If there are multiple solutions, output any of them.

Scoring


This problem consists of four subtasks, in each subtask tests satisfy constraints in statement:

- 1. $1 \le n, m, q \le 100$. Score 12 points.
- 2. $1 \le n, m, q \le 500$. Score 18 points.
- 3. $1 \le n, m, q \le 2000$. Score 26 points.
- 4. $1 \le n, m, q \le 2 \cdot 10^5$. Score 44 points.

Example

standard input	standard output
544	1 3
1 2	3 3
3 1	-1 -1
3 4	
5 3	
4523	
2 1 3 1	
1 3 5	
2345	
2 1 3 1	

Note

- Sequence: [4, 5, 2, 3]
- Subsegment = [4, 5, 2], v = 1. lca(4, 5, 2) = 1, answer: (1, 3).
- Query on changing, new sequence: [4, 5, 5, 3]
- Subsegment = [5,3], v = 5. lca(5) = 5, answer: (3,3).
- Subsegment = [4, 5, 5], v = 1. lca(4) = 4, lca(5) = 5, lca(4, 5) = 3, lca(5, 5) = 5, lca(4, 5, 5) = 3. There is no solution.