4. Initial terms ay, as, ..., ap of a sequence (a,) are different positive integers, and for n > k the
number a,, is the minimum positive integer not representable as a sum of some of the numbers ay, a2, ...,
a,—1 (maybe one of them). Prove that a,, = 2a,_; for all large enough n.

Solution. For each n > k we consider the set of all positive integers not exceeding ay + as + ...+ ay,;
the numbers in this set that are not sums of elements of the set {ay,as,...,a,} we call gaps. If the set of
gaps is not empty, then @,y is the minimum gap, otherwise a,11 = a; + a2+ ...+ a, + 1. We claim that
when n increases the number of gaps decreases.

Note that if t < S = a; + as + ...+ a, is a sum of several numbers in the set {ay,as,...,a,}, then
S —t is also such a sum: it is the sum of all ¢; not included in the original sum.

The fact that a,4; is the minimum gap means that all the numbers from 1 to a,4; — 1 are sums of
some of the numbers ay, a9, ..., a,. Therefore all the numbers from a; + ...+ a, — a1 toa; + ...+ a,
are such sums too. Adding a,y, we see that all the numbers from a; +...+a, toay +...4+ a, + a,yq are
sums of fome of the numbers ay, as, ..., ay,p1. Thus, when n increases by 1, no new gaps occur, and at
least one old gap (a,4 itself) disappears, q.e.d.

Therefore at some moment there will be no gaps.

We see that a1 = a; 4+ ...+ a, + 1 for all large enough n. Then 42 = a1+ ...+ a, + a1+ 1=
(a4 ...+ a,+ 1)+ a1 = 2a,41, q.ed.

5. Let C'(k) denotes the sum of all different prime divisors of a positive integer k. For example, C'(1) = 0,
C'(2) =2, C(45) = 8. Find all positive integers n such that C'(2" + 1) = C'(n).

The answer is n = 3.

Solution. Let P(t) be the largest prime divisor of a positive integer ¢t > 1.

Let m be the largest odd divisor of n: n = 2%m. Then 2" + 1 = 92" m +1=a"+1, where a = 22" 1f
k > 0, that is, n is even, then C'(n) = C(m)+2 and C (2" + 1) = C(a™ + 1).

We need the following two lemmas.

Lemma 1. For every prime p > 2 we have P (‘Zp—_l‘_"ll) =por P (%) > 2p+ 1.

Proof. Let P (“ap_l‘_"ll) = ¢q. It follows from Fermat’s little theorem that ¢ divides 297! — 1 and therefore

(a®? —1,a97' — 1) = a?P9=Y) — 1. The greatest common divisor (2p,q — 1) is even and must equal 2p or
2. In the first case 2p divides ¢ — 1, whence ¢ > 2p+ 1. In the second case ¢ divides a> — 1 but not @ — 1

(because a® + 1 is divisible by ¢), that is, « = —1 (mod ¢). Then “;—4‘_"11 =a?™ 1 —...+1=p (mod ¢) and
pP=4q.

Lemma 2. If p; and py are different odd primes then P (“Z_—"’ll) #* P (%)

Proof. If P (“Zil_"il) =P (“Zj_"il) = ¢ then ¢ divides @' —1 and a*P2 —1, therefore (a?P1 —1,a?P2—1) =
a?P1:272) _ 1 = 2 — 1 and hence a + 1, but then p; = ¢ and py = ¢, a contradiction.

We are ready now to slve the problem. Let pq, ..., ps be all the prime divisors of n. It follows from
lemma 2 that

aPl 4+ 1 aPs +1
cC2"+1) =P ...+ P :
41> <a+1>+ " <a+1>

IfC@2"+1) > P (“Z:_"il) +...+P (“Z:_"il), then 2™ + 1 has at least one prime divisor not summed in the
L.H.S., that is,

afr + 1 afs 4+ 1
" > > .
(2 +1)/P<a_|_1>—|- —I-P<a_|_1>—|-3/])1—|- +ps+3>C(n)

Therefore we can assume the equality:

aPl 4+ 1 aPs +1
2"+ 1) =P .+ P .
cersy=r(t) e ()

a+1

It remains to consider the case when P (“:;—"’11) = p; for all ¢. In this case we have C'(n) = C (2" +1) =

p1+ ...+ ps, son must be odd and ¢ = 2. But 2? =2 (mod p) for all odd prime p, therefore p > 3 cannot
divide 2P + 1. Thus s = 1, p = 3, n = 3" with some positive integral 7. The number 27 + 1 = 23" + 1 must
be a power of 3. However 19 divides this number for r = 2 and consequently for all » > 2. Thus the only
remaining case is n = 3, which obviously satisfies the condition.

If in this case there is an ¢ such that P (“pi"'l) #pi,then C2"+ 1) > pr+ ...+ ps+pi+1>C(n).



6. A regular tetrahedron ABC'D and points M, N are given in space. Prove the inequality
MA-NA4+MB-NB+MC-NC>MD-ND.
(A tetrahedron is called regular if all its six edges are equal.)
Solution. We need the following
Lemma 1. For every different points A, B, C, D the inequality

AB-CD+ BC - AD > AC - BD

holds.
Proof. Consider the point A; on the ray DA such that DA, = ﬁ. In the same way we take the points
By and 'y on the rays DB and DC'. Since %;‘31 = %]il = DA%DB, it follows from similarity of the triangles

DAB and DB; Ay that A1 By = %. Similarly, B1Cy = % and C1 A = % (1). Substituting
these equalities in the triangle inequality A1 By + B1C1 > A1C we obtain AB-CD+ BC-AD > AC - BD.
Lemma 2. For every points M, N in the plane of the triangle ABC

AM-AN_I_BM-BN_I_CM-CN
AB - AC BA - BC CA-CB

> 1. (+)

Proof. In the plane ABC we consider the point K such that ZABM = /KBC, /ZMAB = ZC'KB.

Note that
CK _ AM AK _ CM BC _ BM

= = = . 2

BK AB'BK BC’'BK AB 2

Applying lemma 1 to the points A, N, C', K we have AN -CK +CN -AK > AC - NK. Triangle inequality
NK > BK — BN gives us AN -CK +CN - AK > AC - (BK — BN). Hence we obtain

AN-CK_I_CN-AK_I_BN 51 (3)
AC-BK ' AC-BK BK ~
It follows from (3) and (2) that 484X 4 BMBN 4 CMCH 5
Corollary. The inequality (*) remains true when one of the points M, N, or both, lie outside the
plane of the triangle ABC.
It follows from lemma 2 when instead of M and N it is applied to their projections onto the plane of
the triangle ABC'.
We are ready now to solve the problem. On the ray DA we consider the point A; such that DA, = ﬁ.
In a similar way we take points By, C'1, My, Ny on the rays DB, DC, DM, DN.
Applying the corollary of Lemma 2 to the points M;, Ny and the triangle Ay B;C; we get the inequality
AiMy - A{Ny + By M - BiN; + C1 M, - Cy Ny > A1 B?; using equations similar to (1) we obtain

AM AN N BM BN N CM CN N AB 2
DA-DM DA-DN ''DB-DM DB-DN ' DC-DM DC-DN 7 \DA-DB) "’

whence

AM - AN + BM -BN +CM -CN > DM - DN,

q.e.d.



