1. A non-isosceles acute triangle ABC' is inscribed in a circle w. Let H be the orthocentre of
this triangle and M the midpoint of AB. Points P and ) on the arc AB of the circle w that does
not contain C' satisty ZACP = /BCQ < ZAC(Q. Let R and S be the feet of the perpendiculars
from H onto C'Q and C P respectively. Prove that P, (), R, S lie on the same circle, and M is the
centre of this circle.

Solution. Let AA|, BBy, C'Cy be the altitudes of the triangle ABC', and L the point where
C'Cq meets PQ). Without loss of generality we assume that H lies inside the angle AC'Q). Note
that the points C, Ay, By, R, S, H belong to the circle with diameter C H. Obviously PQ || AB.
Then ZHLEQ = 90°. It follows that H, R, (), L belong to the circle with diameter H(). Therefore
/CSR=/CHR =/RQL = ZRQP, that is, P, ), R, S are concyclic.

Since ZAA1B = /BB1A = 90°, we have MA; = MB; = AB/2. Thus M lies on the
perpendicular bisector of Ay By.

It follows from the equalities LZA1CR = ZBC(Q = LACP = /ZB{CS that A{B1SR is an
isosceles trapezoid. Therefore perpendicular bisectors of A; By and RS coincide. Then M lies
on the perpendicular bisector of RS. On the other hand, APQB is an isosceles trapezoid, so M
also belongs to the perpendicular bisector of P(). This means that M is the centre of the circle
containing P, @), R, S.

2. Find all functions f : R — R such that (z +4*)f(yf(z)) = vy f(y? + f(z)) for all real z, y.
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Answer: f(z) =a; f(z) =0; f(z) = 0,2 # —az, for arbitrary a € (—oo, —1] U (0, +00).
a,r = —a

Solution: Setting y = 0 in the given equation

(z +y*)fyf(x) =2y f(y* + fo)) (1)

we have f(0) = 0. Now changing y by —v in (1) we obtain (z +y*)f(—yf(z)) = —zyf(y* + f(z)) =
—(x +y?)f(yf(z)) whence

(z+y*) (f(yf(2)) + f(=yf(x))) =0 (2)

for all z,y € R.

Denote A = {z|f(x) = 0}. Consider the following cases:

(i) A = {0}. Set @ = —y? in (1), then —y* f(y* + f(—y?)) = 0 whence y* + f(—y?) = 0, i.e.
f(t) =t for all t < 0. Now for = 1 the equation (2) gives f(—yf(1)) = —f(yf(1)), or (because
f(1) #0) f(—2) = —f(x) for all x. Therefore f(x) = x for all real x. It is easy to see that this
function satisfies the given equation.

(ii) A =R, then f(x) = 0 for all = is obviously a solution of (1).

(iii) Now let A # {0}, A # R. That is, there exist b # 0, d # 0 such that f(b) = 0 and
f(d) # 0; denote f(d) = a. Set = b in (1) thus obtaining yf(y?) = 0, i.e. f(¢) =0 for all ¢ > 0.
Now set = d in (2). Then f(ay) + f(—ay) = 0 if y* + d # 0. One of f(ay), f(—ay) is zero since
f(t) =0 for t > 0. Hence for d > 0 we have f(ay) = f(—ay) = 0 for all y, contrary to f(d) # 0.
Thus d < 0 and the only possible nonzero value of the function f can be f(day) for y satisfying
y? +d=0,ie f(£ay/—d). Together with f(d) # 0 this gives d = +ay/—d, so d = —a>.

It remains to check whether the function given by f(x) = {g’i 7_A _Zz’ does satisfy the
equation. If # # —a? then (1) becomes (z +y?)f(y-0) = zyf(y*), or 0 = 0. Now let = —a?, then
we need to check whether the equality (y*> — a?)f(ay) = —a’yf(y* + a) holds for all y. Note that
left-hand side of the equality is zero anyway (f(ay) = 0 for y # —a and y? — a® = 0 for y = —a).
Thus we need yf(y* + a) = 0 for all y. For this to be valid the equation y* + a = —a?® should not
have a real solution y # 0. Thus —a®? —a > 0, so a € (—oo0, —1]U (0, +o0) (we remind that a # 0).

3. A rectangle on a squared paper with 1 x 1 squares is divided into domino figures (that is,
rectangles made of two unit squares sharing a side). Prove that all the vertices of squares inside
the rectangle and on its border can be coloured in three colours so that the following condition is



satisfied for each two vertices with distance 1: they have different colours if the segment connecting
them lies on the border of a domino figure, and same colour otherwise.

Solution. We prove that there is a desired colouring of a special kind. Let us assign the
numbers 1, 2, 3 to the colours and call a square right if these colours are found in this order when
we move around the square clockwise, and left otherwise. Suppose the squares of the rectangle are
coloured chequerwise, so that in every domino figure one square is black and another white. Now
we claim there is a desired colouring of vertices such that all the black squares are right and all
the white squares are left; we call such a colouring regular.

Note that the regular colouring of a square in our rectangle is defined by the colour of any one
of its vertices. Indeed, if the square is, say, black (so it must be right according to the colouring of
its vertices), we can start at the vertex whose colour is known and move clockwise, adding 1 mod 3
to the colour number when moving along the domino side and leaving colour unchanged when not.

If two squares share a side, starting this procedure from one of their common vertices gives the
same colour for the other one: one of the squares is black, and another is white, and moving from one
common vertex to another is clockwise in one square and counterclockwise in the other. Therefore
if a square having one still uncoloured vertex shares sides with two squares whose vertices are
already coloured, we can colour the remaining vertex so that that the square is coloured regularly.
If a square with two still uncoloured vertices shares a side with a square whose vertices are regularly
coloured, we can obviously colour its remaining vertices regularly.

Applying this procedure we can colour the vertices of all squares of the rectangle. First we
define which squares must be left and which right. Then we colour the vertices of the left lower
square, choosing the colour of the left lower vertex arbitrarily. After that we can successively colour
the vertices of the squares in the lower row. Then every next row can be coloured starting from
the left square: the leftmost square shares a side with only one square whose vertices are already
coloured, and every next square with two.



