Solutions for 1-st round IZhO 2018

1. Let α, β, γ be the angles of a triangle opposite to the sides a, b, c respectively. Prove the inequality

$$
2\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right) \geq \frac{a^{2}}{b^{2}+c^{2}}+\frac{b^{2}}{a^{2}+c^{2}}+\frac{c^{2}}{a^{2}+b^{2}}
$$

Solution. By the Law of Sines, RHS equals $\frac{\sin ^{2} \alpha}{\sin ^{2} \beta+\sin ^{2} \gamma}+\frac{\sin ^{2} \beta}{\sin ^{2} \alpha+\sin ^{2} \gamma}+\frac{\sin ^{2} \gamma}{\sin ^{2} \alpha+\sin ^{2} \beta}$.
Applying Cauchy-Bunyakowski inequality we have

$$
\sin ^{2} \alpha=\sin ^{2}(\beta+\gamma)=(\sin \beta \cos \gamma+\sin \gamma \cos \beta)^{2} \leq\left(\sin ^{2} \beta+\sin ^{2} \gamma\right)\left(\cos ^{2} \gamma+\cos ^{2} \beta\right)
$$

therefore $\cos ^{2} \beta+\cos ^{2} \gamma \geq \frac{\sin ^{2} \alpha}{\sin ^{2} \beta+\sin ^{2} \gamma}$.
Adding similar inequalities for $\cos ^{2} \gamma+\cos ^{2} \alpha$ and $\cos ^{2} \alpha+\cos ^{2} \beta$ we get the desired result.
2. Points N, K, L lie on the sides $A B, B C, C A$ of a triangle $A B C$ respectively so that $A L=B K$ and $C N$ is the bisector of the angle C. The segments $A K$ and $B L$ meet at the point P. Let I and J be the incentres of the triangles $A P L$ and $B P K$ respectively. The lines $C N$ and $I J$ meet at point Q. Prove that $I P=J Q$.

Solution. The case $C A=C B$ is trivial. If $C A \neq C B$, we may suppose, without loss of generality, that $C N$ meets the segment $P K$.

Let the circumcircles ω_{1} and ω_{2} of the triangles $A P L$ and $B P K$ respectively meet again at point T. Then

$$
\begin{equation*}
\angle L A T=\angle T P B=\angle T K B \tag{1}
\end{equation*}
$$

and $\angle A L T=\angle A P T=\angle T B K$, that is, $\triangle A L T=\triangle K B T$, hence

$$
\begin{equation*}
A T=T K \tag{2}
\end{equation*}
$$

It follows from (1) that the quadrilateral $A C K T$ is cyclic; together with (2) this means that $\angle A C T=\angle T C K$, i.e. T lies on the bisector of $C N$.

Let $I J$ meet ω_{1} and ω_{2} at I_{1} and J_{1} respectively. Since ω_{1} and ω_{2} have equal radii and $A L=B K$, the triangles $A L I_{1}$ and $B K J_{1}$ are equal. We use Mansion's lemma: the midpoint of arc $X Y$ of the circumcircle of $X Y Z$ lies at equal distances from the ends of this arc and the incentre. It follows from this lemma that $I_{1} I=I_{1} L=J_{1} K=J_{1} J$. Moreover, $\angle P I_{1} T=\angle P A T=\angle P K T=$ $\angle P J_{1} T$, therefore, $I_{1} T=J_{1} T$. Thus T lies on the median bisector of $I_{1} J_{1}$ and

Figure 1: image on the median bisector of $I J$.

It remains to prove that T lies on the median bisector of $P Q$. Let $R=A K \cap C T$. Then $\angle A R T=\angle R A C+\angle A C R=$ $\angle R A C+\angle A K T=\angle R A C+\angle K A T=\angle L A T=\angle B P T$. Since $P Q$ bisects the angle $R P B, \angle P Q T=\angle P R T+\angle R P Q=$ $\angle P B T+\angle B P J=\angle T P Q$, therefore T belongs to the median bisector of $P Q$ and $I P=J Q$.
3. Prove that there exist infinitely many pairs (m, n) of positive integers such that $m+n$ divides $(m!)^{n}+(n!)^{m}+1$.

Solution. We shall find a pair such that $m+n=p$ is prime and n is even. Applying Wilson's theorem we have

$$
m!=(p-n)!=\frac{(p-1)!}{(p-n+1) \ldots(p-2)(p-1)} \equiv \frac{-1}{-(n-1) \ldots(-2)(-1)} \equiv \frac{1}{(n-1)!} \equiv \frac{n}{n!} \quad(\bmod p)
$$

It follows from Fermat's Little Theorem that $(n!)^{p} \equiv n!(\bmod p)$, therefore

$$
(m!)^{n}+(n!)^{m}+1 \equiv\left(\frac{n}{n!}\right)^{n}+(n!)^{p-n}+1 \equiv \frac{n^{n}+n!+(n!)^{n}}{(n!)^{n}} \quad(\bmod p)
$$

thus it suffices to prove that the number $n^{n}+n!+(n!)^{n}$ has a prime divisor $p>n$ for infinitely many even n.
We prove that this condition is satisfied, for instance, by all the numbers of the form $n=2 q$, where $q>2$ is prime. Let $A=(2 q)^{2 q}+(2 q)!+((2 q)!)^{2 q}$. For a prime p and integer k we denote by $v_{p}(k)$ the largest integer ℓ such that p^{ℓ} divides k.

If $r<2 q$ is prime and $r \notin\{2, q\}$ then $A \equiv(2 q)^{2 q} \not \equiv 0(\bmod r)$. The largest degree of q dividing $(2 q)$! is q^{2}, while for $(2 q)^{2 q}$ and $((2 q)!)^{2 q}$ it is $2 q$ and $4 q$ respectively, therefore $v_{q}(A)=2$.

Finally, $v_{2}((2 q)!)=\left[\frac{2 q}{2}\right]+\left[\frac{2 q}{4}\right]+\left[\frac{2 q}{8}\right]+\cdots<\frac{2 q}{2}+\frac{2 q}{4}+\frac{2 q}{8}+\cdots=2 q$, so $v_{2}((2 q)!)<v_{2}\left((2 q)^{2 q}\right)$ and obviously $v_{2}((2 q)!)<v_{2}\left((2 q)!^{2 q}\right)$, thus $v_{2}(A) \leq 2 q-1$. On the other hand, $A>(2 q)^{2 q}>2^{2 q-1} q^{2}$, therefore A has a prime divisor $p>2 q$, q.e.d.

