XIV International Zhautykov Olympiad in Mathematics
 Almaty, 2018

January 12, 9.00-13.30

First day
(Each problem is worth 7 points)

1. Let α, β, γ be the angles of a triangle opposite to the sides a, b, c respectively. Prove the inequality

$$
2\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right) \geq \frac{a^{2}}{b^{2}+c^{2}}+\frac{b^{2}}{a^{2}+c^{2}}+\frac{c^{2}}{a^{2}+b^{2}} .
$$

2. Points N, K, L lie on the sides $A B, B C, C A$ of a triangle $A B C$ respectively so that $A L=B K$ and $C N$ is the bisector of the angle C. The segments $A K$ and $B L$ meet at the point P. Let I and J be the incentres of the triangles $A P L$ and $B P K$ respectively. The lines $C N$ and $I J$ meet at point Q. Prove that $I P=J Q$.
3. Prove that there exist infinitely many pairs (m, n) of positive integers such that $m+n$ divides $(m!)^{n}+(n!)^{m}+1$.
