SOLUTION TO THE EXPERIMENTAL COMPETITION
 The Law of Archimedes ($\mathbf{1 5 . 0}$ points)

Part 1. Installation parameters

1.1 A strip of millimeter paper is screwed onto the test-tube. We make marks on the strip, untwist it and obtain the lengths of $1,2,3$ and 4 revolutions as
$l_{1}=63 \mathrm{~mm}$
$l_{2}=127 \mathrm{~mm}$
$l_{3}=191 \mathrm{~mm}$
$l_{4}=255 \mathrm{~mm}$
From these data we find that the length of one revolution is equal to $\langle l\rangle=(64,0 \pm 0.3) \mathrm{mm}$
The diameter is then calculated by the formula $D=\frac{\langle l\rangle}{\pi}=20,372 \mathrm{~mm}$, the unstrumental error is found as $\Delta D=D \frac{\Delta l}{\langle l\rangle}=0,1 \mathrm{~mm}$ and the final result is written as

$$
D=(20,4 \pm 0.1) \mathrm{mm}
$$

1.2 The length of the test-tube is obtained as $L=(175 \pm 1) \mathrm{mm}$.
1.3.1 - 1.3.2 . Dependence of the immersion depth of the tesr-tube on the number of nuts, placed in it, is shown in Table 1. First, the length x of the part of the test-tube, protruding above the water level, is measured. And then the immersion depth is calculated by the formula $h=L-x$.

Table 1

Number of nuts	$x, \mathrm{~mm}$	$h, \mathrm{~mm}$
1	80	95
2	65	110
3	50	125
4	37	138
5	22	153
6	10	165

The dependence obtained is linear and is described by the formula

$$
\begin{equation*}
h=a n+b \tag{1}
\end{equation*}
$$

The parameters, calculated by the least square method, are equal

$$
\begin{align*}
& a=(14,1 \pm 0,5) \mathrm{mm} \\
& b=(81,8 \pm 1,8) \mathrm{mm} \tag{2}
\end{align*}
$$

1.3.3 The theoretical formula for the resulting dependence follows from the equilibrium condition

$$
\begin{equation*}
(M+m n) g=\rho S h d \Rightarrow h=\frac{M+m n}{\rho S} . \tag{3}
\end{equation*}
$$

where $S=\frac{\pi D^{2}}{4}$ stands for the cross-sectional area of the test tube.
From the comparison of expressions (3) and (1) it follows that

$$
\begin{equation*}
a=\frac{m}{\rho S} \Rightarrow m=\rho S a \tag{4}
\end{equation*}
$$

Numerical calculations lead to the following result

$$
\begin{equation*}
m=\rho \frac{\pi D^{2}}{4} a=4,58 \cdot 10^{-3} \mathrm{~kg}=4,58 \mathrm{~g} \tag{5}
\end{equation*}
$$

The instrumental error in measuring the mass of the nut is calculated by the formula

$$
\begin{equation*}
\Delta m=m \sqrt{\left(\frac{\Delta a}{a}\right)^{2}+\left(2 \frac{\Delta D}{D}\right)^{2}}=1,6 \cdot 10^{-4} \mathrm{~kg} \tag{6}
\end{equation*}
$$

The final weight of the nut is written as

$$
\begin{equation*}
m=(4,58 \pm 0,16) g . \tag{7}
\end{equation*}
$$

The weight of the test-tube is calculated by the formula

$$
b=\frac{M}{\rho S} \Rightarrow M=\rho S b=\rho \frac{\pi D^{2}}{4} b=2,67 \cdot 10^{-2} \mathrm{~kg}=26,7 g .
$$

The error in calculating the mass of the test-tube is found as

$$
\begin{equation*}
\Delta M=M \sqrt{\left(\frac{\Delta b}{b}\right)^{2}+\left(2 \frac{\Delta D}{D}\right)^{2}}=0,6 g . \tag{8}
\end{equation*}
$$

To simplify further calculations, we note that the ratio of the parameters of the linear dependence (2) is equal to the ratio of the mass of the test-tube and the nut:

$$
\begin{equation*}
n^{*}=\frac{M}{m}=\frac{b}{a}=5,82 . \tag{9}
\end{equation*}
$$

Part 2. Oscillations of the test-tube

2.1 To simplify the calculations, the formula for the period of oscillations can be rewritten in the form

$$
\begin{equation*}
T_{n}=2 \pi \sqrt{\frac{h_{0}}{g}}=2 \pi \sqrt{\frac{a n+b}{g}} . \tag{10}
\end{equation*}
$$

To linearize this dependence, it is necessary to plot and analyze the dependence of the squared period on the number of nuts $T^{2}(n)$. The results are summarized in Table 2.

Table 2.

Number of nuts	T, s	T^{2}, s^{2}
1	0,680	0,463
2	0,717	0,514
3	0,752	0,565

4	0,785	0,617
5	0,817	0,668
6	0,848	0,720

The graph of the dependence $T^{2}(n)$ is shown in the figure below.

2.2 The results of the measurements are given in tables

The random error in measuring the period is estimated from the following formula

$$
\begin{equation*}
\Delta t=2 \sqrt{\frac{\sum_{k}\left(t_{k}-\langle t\rangle\right)^{2}}{N(N-1)}} ; \quad \Delta T=\frac{\Delta t}{k} . \tag{11}
\end{equation*}
$$

Here t refers to the time needed to perform k periods of oscillations (in our case $k=5$ and $k=3$ respectively), $N=10$ stands for the number of measurements.

Table 3. Oscillations in the wide vessel

Number of nuts	Number of periods k	Time $t, \mathrm{~s}$	Period $T, \mathrm{~s}$	Averaged period $\langle T\rangle, \mathrm{s}$	Error in the period ΔT	Squared period T^{2}, s^{2}
4	5	3,74	0,748	0,744	0,009	0,554
	5	3,64	0,728			
	5	3,77	0,754			
	5	3,71	0,742			
	5	3,74	0,748			
5	5	3,93	0,786	0,770	0,010	0,594
	5	3,81	0,762			
	5	3,89	0,778			
	5	3,83	0,766			
	5	3,80	0,760			

6	5	3,93	0,786	0,789	0,010	0,622
	5	3,93	0,786			
	5	4,04	0,808			
	5	3,93	0,786			
	5	3,89	0,778			

Table 3. Oscillations in the beaker

	Number of Number periods of nuts	Time $t, \mathrm{~s}$	Period $T, \mathrm{~s}$	Averaged period $\langle T\rangle, \mathrm{s}$	Error in the period ΔT	Squared period T^{2}, s^{2}
4	3	2,21	0,74	0,742	0,014	0,551
	3	2,25	0,75			
	3	2,27	0,76			
	3	2,20	0,73			
	3	2,20	0,73			
	3	2,38	0,79	0,789		0,015
	3	2,37	0,79		0,623	
	3	2,34	0,78			
	3	2,42	0,81			
	3	2,33	0,78			
	2	1,61	0,81	0,818		0,036
	2	1,59	0,80			0,669
	2	1,66	0,83			
	2	1,63	0,82			
	2	1,69	0,85			

2.4 What possible reasons can explain the deviation between experimental data and theoretical calculations?

Table 4

No.	Possible reasons	«Yes»	«No»
1	Measurement errors	X	X
2	Oscillation damping		X
3	An increase in the effective mass of a moving test-tube due to water entraining	X	
4	Change in pressure under the tube when it moves as compared to hydrostatic pressure	X	
5	Surface tension forces		X

Comments:

1. Of course, errors ifluence any result.
2.3 These reasons should lead to an increase in the period, and not to a decrease.
2. Apparently, the main reason, leading to a reduction in the period.
3. Too small forces.

Marking scheme

Part1. Installation parameters

* - marked only if the measurements are marked.

Part 2. Oscillations of the test-tube

№	Criteria	Total	Points
2.1	Theoretical dependence	1,2	
	- formula for the period $T(n)$ via measured parameters		0,2
	- periods are calculated		6x0,1
	- linearization $T^{2}(n)$ (other)		0,1(0)
	Plotting the graph: - axes are signed and ticked; - points are plotted in accordance with the table;		$\begin{aligned} & 0,1 \\ & 0,2 \\ & \hline \end{aligned}$
2.2	Formula for evaluating the error in the period: - decrease of the random error with increasing the number of measurements; - modulus of the average deviation from the mean value;		$\begin{gathered} 0,2 \\ (0,1) \end{gathered}$
	Oscillations in the wide vessel	3,0	
	Results within the range $\pm 20 \%$ ($\pm 30 \%$, larger)		$3 \times 0,3(0,2 ;$ $0)$
	More than 7 measuments are taken (more than 4 , less)*		$3 \times 0,3(0.2 ;$ 0)
	Periods are calculated*		$3 \times 0,1$
	Errors are calculated*		3x0,1
	Points are plotted in accordance with the table *		0.2
	Errors are stated in the graph*		0,2
	The periods of oscillations are found to be less than the theoretical one (more than $0,1 \mathrm{~s}$)*		0,2
	Oscillations in the beaker	3,3	
	The results of the measurements within the range $\pm 20 \%$ ($\pm 30 \%$, larger)		$3 \times 0,3(0,2 ;$ 0)
	More than 7 measuments are taken (more than 4, less)*		$3 \times 0,3 \text { (0.2; }$ $0)$
	Periods are calculated*		$3 \times 0,1$
	Errors are calculated*		3x0,1
	Points are plotted in accordance with the table *		0.2
	Errors are stated in the graph*		0,2
	The periods of oscillations are close to theoretical (the difference is not more than $0,2 \mathrm{~s})^{*}$		0,3
	The periods of oscillations in different vessels are similar (differences not more than 0.2 s) *		0,2
2.4	Possible reasons	1,5	
	- each correct answer		5x0,3
	Total	15	

* - marked only if the measurements are marked.

