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SOLUTIONS TO THE PROBLEMS OF THE THEORETICAL 

COMPETITION 
Attention. Points in grading are not divided! 

Problem 1 (10.0 points) 

Problem 1A (3.0 points) 
Suppose that during the time interval t  the number of bullets hit the sandbox is equal to N . 

Then, the momentum, transferred to the sandbox, is found as p Nmu    which is equivalent to 

the action of a horizontal force 

 p Nmu
F nmu

t t

 
  
 

.  (1) 

For the deflection angle   this horizontal force F  does work 

 sinA Fl  .  (2) 

Here l  is the distance from the point of suspension to the center of mass. 

The deflection angle is a maximum when all the work done is converted into the target potential 

energy equal to 

 (1 cos )W Mgl   .  (3) 

The energy conservation law A W  yields the final answer 

 
max 2arctg 2arctg 0.2 rad 11.65

F nmu

Mg Mg


   
       

   
.  (4) 

 

Content Points 

Formula (1) 
p Nmu

F nmu
t t

 
  
 

 0,5 

Formula (2) sinA Fl   0,5 

Formula (3) (1 cos )W Mgl    0,5 

Formula (4) max 2arctg 2arctg
F nmu

Mg Mg


   
    

   
 1,0 

Numerical value max 0.2 rad 11.65     0,5 

Total 3,0 

 

Problem 1В (4.0 points) 
Charge repulsion on the surface results in an increase of the bubble size. Due to inertia the bubble 

passes by the equilibrium position and oscillations occur. Due to internal friction of the gas the 

oscillations vanish, the bubble reaches a new equilibrium state such that the kinetic energy of the 

soap film is transferred to the internal energy of the gas, which means that the gas in this situation 

does not obey the adiabatic equation. 

Let us make use of the law of energy conservation for the film-gas system of the form: 

 2 2
2 2

1 1 1 2 2 2

1 2

5 5
8 8

2 2 2 2

kq kq
PV R PV R

R R
         (1) 

Taking into account the surface tension the initial pressure of the gas in the bubble is written as 

 
1

1

4
p

R


 . (2) 

The final pressure in view of the electrostatic repulsion force is found as (recall the well-known 

problem for the forces that attempt to tear out the charged sphere) 
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 2

2 2 4

2 0 2

4

32

q
p

R R



 
  . (3) 

In our case  

 3

1 14 / 3V R , 
3

2 24 / 3V R .  (4) 

Under those conditions, the joint solution of equations (1) - (4) gives the answer 

 3

0 132q R   . (5) 

 

Content Points 

Pinitial = Psurf 0.5 

Pfinal = Psurf – Pelectr 0.3 

Psurf = 4σ/R 0.3 

Pelectr = q2/32π2ε0R
4 0.5 

Conservation of energy instead of adiabatic process 0.5 

Wsurf = 8πR2σ 0.3 

Welectr = q2/8πε0R 0.5 

Wgas = (5/2)νRT = (5/2)PV 0.4 

Formula for the sphere volume 0.2 

Correct answer 0.5 

Total 4.0 

 

Problem 1С (3.0 points) 
The signal can be suppressed by the interference of waves. The waves coming from the sources 

1S  

and 
2S  arrive at the receivers with the same phase, so the wave from the third source must arrive at 

receivers with the opposite phase than those from the sources 
1S  and 

2S . To assure this, the 

distance from the third source to the receivers must differ by the amount of 


m
2

,  where 

...2,1,0 m . To find the points that satisfy those conditions, it is necessary to plot two families 

of circles, one with the radii 


mR 
2

1  and with the center at the point 
1A , and the other with the 

radii 


mR 
2

2  and with the center at the point 
2A . The intersection points of those two families 

represent the points where the third source should be placed, they are marked by circles. The 

amplitude of waves from the third source must be 2 times greater than the amplitude of waves 

coming from sources 
1S  and 

2S , hence the wave intensity of the third source should be 4 times 

higher, i.e. 04I . 

 
 



XIII International Zhautykov Olympiad/Theoretical Competition/Solutions                             Page 3/14 

Content Points 

Interference to suppress waves 0,5 

Conditions for minima are used (waves out-of-phase); 0,2 

Difference in distance must be integer number of half of the wavelength 0,3 

Two families of circles are drawn 2×0,5 

Intersection points are used 0,4 

All 6 points are correctly stated in the highlighted area 6×0,1 

Total 3,0 

 

Problem 2. Fantastic trip through the Universe (10.0 points) 
1. Planets with strange shapes (4.0 points) 

1.1 [0.7 points] The easiest approach to the solution of the problem is the analogy between 

Coulomb force and Newton's law of gravitation: 

 𝐹 =
1

4𝜋𝜀0

𝑞1𝑞2

𝑟12
2  and 𝐹 = 𝐺

𝑚1𝑚2

𝑟12
2 . (1) 

Further, it is a well known result from the Gauss theorem that the electric field strength of an 

infinite charged plane, with the surface density 𝜎 is found as 

 𝐸 =
𝜎

2𝜀0
.  (2) 

By analogy to the charged plane, the result for the planet is similarly obtained as: 

 𝑔1 =
𝜌1ℎ

2∙(1
4𝜋𝐺⁄ )

= 2𝜋𝐺𝜌1ℎ,  (3) 

 ℎ =
𝑔1

2𝜋𝐺𝜌1
= 78.0𝑘𝑚. (4) 

*** 
The same result is easily achieved by cutting an infinite plane into 

thin rings and further integrating: 

 

The attracting force of the ring of mass 𝑀, and of radius 𝑅 at the 

distance 𝑎 is written as: 

𝐹 = 𝐺
𝑀𝑚

𝑅2 + 𝑎2
𝑐𝑜𝑠𝜃 = 𝐺

𝑀𝑚

𝑎2
𝑐𝑜𝑠3𝜃. 

 
 

We divide the plane of the height ℎ into thin rings of thickness dr. Then the force of gravitycaused by the ring of the 
radius r is equal to 

 𝑑𝐹 = 𝐺
𝑑𝑀𝑚

𝑎2
𝑐𝑜𝑠3𝜃 = 𝐺

(𝜌1ℎ2𝜋𝑟𝑑𝑟)𝑚

𝑎2
𝑐𝑜𝑠3𝜃.  

It follows from the trigonometric considerations that 𝑟 = 𝑎 ∙ 𝑡𝑎𝑛𝜃, 𝑑𝑟 =
𝑎

𝑐𝑜𝑠2𝜃
𝑑𝜃. 

Substituting the above expression and integrating we find the total force F acting on the body of mass 𝑚: 

 

𝐹 = 2𝜋𝐺𝜌1ℎ𝑚 ∫ 𝑠𝑖𝑛𝜃𝑑𝜃

𝜋
2

0

= 2𝜋𝐺𝜌1ℎ𝑚.  

This is identical to the answer obtained from the analogy with the electrostatic field.  

1.2 [0.5 points] For an observer that is located close to the infinite plane, the solid angle is 

obviously equal to  

 Ω1 =
4𝜋

2
= 2𝜋 , (5) 

and from the problem formulation we get 

 𝛼 =
𝑔1

2𝜋
  or  𝛼 = 𝐺𝜌1ℎ = 1.56 × 10−2𝑚/𝑠2.  (6) 

1.3 [0.7 points] We divide the pyramid into thin layers of thickness Δℎ parallel to the base. All of 

these layers are visible from the top of the pyramid with the same solid angle Ω2, which is equal to 

one sixth of the full solid angle (as if the observer was located inside the cubeat its center!): 

 Ω2 =
1

6
4𝜋 =

2

3
𝜋. (7) 
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The free fall acceleration of the single layer is found as 

 𝑑𝑔2 =
𝑑𝐹

𝑚
= 𝛼Ω2 =

2

3
𝜋𝐺𝜌2Δℎ,  (8) 

or after the summation over all the layers of the pyramid 

 𝑔2 =
1

3
𝜋𝐺𝜌2𝑎 = 3.14 𝑚/𝑠2.  (9) 

1.4 [2.0 points] Let the interaction energy between the spacecraft and the pyramidal planet at the 

time of take-off from its top be equal to 𝑈1, and its speed be 𝑣1. It follows from the law of the 

energy conservation for the parabolic velocity that: 

 𝑚𝑣1
2

2
− 𝑈1 = 0.  (10) 

Similarly, the law of the energy conservation for a spacecraft to start from the cubic planet is 

written as 

 𝑚𝑣2
2

2
− 𝑈2 = 0,  (11) 

where 𝑈2 stands for the corresponding interaction energy with the cubic planet. 

Let us show that there is a simple relationship between 𝑈1 and 𝑈2. To prove so, we consider the 

position of the spacecraft at the center of the cubic planet. On the one hand the position at the center 

of the cube is equivalent to finding the spacecraft at the tops of the six pyramids. Taking into 

account the change in the density of matter, the potential energy of the spacecraft at the center of 

the cube is obtained as 

 𝑈𝑐 = 6𝑈1
𝜌3

𝜌2
.   (12) 

On the other hand the position of the spacecraft at the center of the cube is equivalent to being at 

the tops of the eight identical adjacent cubes with the side 
𝑎

2
. In general, the potential energy of the 

spacecraft in the field of the cubic planet is proportional to the square of its size since 

 𝑈 = 𝐺 ∑
𝑚𝜌3Δ𝑉𝑖

𝑟𝑖
~𝐺𝑚𝜌3𝑎2.   (13) 

Thus, for the cube of the half size, the interaction energy is 4 times less, which means that the 

potential energy of the spacecraft at the center of the cube is found as 

 𝑈𝑐 = 8
𝑈2

4
= 2𝑈2.  (14) 

Equating the expressions (12) and (14) yield 

 𝑈2 = 3𝑈1
𝜌3

𝜌2
.  (15) 

Solving together equations (10), (11) and (15), we finally obtain 

 
𝑣2 = √

3𝜌3

𝜌2
𝑣1 = 6,30 𝑘𝑚/𝑠.  (16) 

 

2. Dusty cloud (6.0 points) 

2.1 [2.5 points] For this problem, we use a mixture of the polar and Cartesian coordinate systems as 

shown below.  

 
The conservation of energy is written as: 

 𝑚𝑣∞
2

2
=

𝑚𝑢𝑥
2

2
+

𝑚𝑢𝑦
2

2
− 𝐺

𝑀𝑚

𝑅
,  (17) 

 

where 𝑀 =
4

3
𝜋𝑅3𝜌4 denotes the total mass of the cloud. 
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Change in the spacecraft momentum projection on the x-axis of the Cartesian coordinate system is 

given by 

 𝑚𝑢𝑥 − 𝑚𝑣∞ = ∫ 𝐺
𝑀𝑚

𝑟2 𝑐𝑜𝑠𝜑𝑑𝑡 = ∫ 𝐺
𝑀𝑚

𝑟2𝜑̇
𝑐𝑜𝑠𝜑𝑑𝜑. (18) 

The law of the angular momentum conservation for a system with the central force is written as 

 𝑟2𝜑̇ = 𝑣∞𝑏.  (19) 

Thus, 

 𝑚𝑢𝑥 − 𝑚𝑣∞ = 𝐺
𝑀𝑚

𝑣∞𝑏
∫ 𝑐𝑜𝑠𝜑𝑑𝜑

𝜃

0
= 𝐺

𝑀𝑚

𝑣∞𝑏
𝑠𝑖𝑛𝜃. (20) 

Similarly for the 𝑦-axis projection: 

 𝑚𝑢𝑦 − 𝑚 ∙ 0 = 𝐺
𝑀𝑚

𝑣∞𝑏
∫ 𝑠𝑖𝑛𝜑𝑑𝜑

𝜃

0
= 𝐺

𝑀𝑚

𝑣∞𝑏
(1 − 𝑐𝑜𝑠𝜃).  (21) 

To simplify further analysis the following dimensionless quantity is introduced 

 𝑧 =
𝐺𝑀

𝑣∞
2 𝑏

,  (22) 

and then 

 𝑢𝑥 = (1 + 𝑧𝑠𝑖𝑛𝜃)𝑣∞,  (23) 

 𝑢𝑦 = 𝑧(1 − 𝑐𝑜𝑠𝜃)𝑣∞. (24) 

Substitution of (23) and (24) into (17) gives rise to 

 1 = (1 + 𝑧𝑠𝑖𝑛𝜃)2 + 𝑧2(1 − 𝑐𝑜𝑠𝜃)2 − 2𝑧
𝑏

𝑅
.  (25) 

Solving this equation for 𝜃, we find 

 
𝜃 = arcsin

𝑏

𝑅
−

𝐺𝑀

𝑣∞
2 𝑏

√1+(
𝐺𝑀

𝑣∞
2 𝑏

)
2

+ arcsin

𝐺𝑀

𝑣∞
2 𝑏

√1+(
𝐺𝑀

𝑣∞
2 𝑏

)
2

 ,  
(26) 

or 

 

𝜃 = 2 arctan

1−√1+2
𝐺𝑀

𝑣∞
2 𝑏

𝑏

𝑅
−

𝑏2

𝑅2

𝑏

𝑅
−2

𝐺𝑀

𝑣∞
2 𝑏

= 0.789 𝑟𝑎𝑑 = 45.2°.   
(27) 

It should be noted that the angle θ, just as the total angle of deflection of the trajectory when moving through the dust 

cloud, can be obtained by integrating the equation obtained from the combination of the laws of conservation of energy 

and angular momentum written in the polar coordinates. Expressions are not presented here because the resulting 

integrals are quite cumbersome. 

2.2 [2.0 points] To begin with we find the dependence of the potential energy of interaction 

between the cloud and the spacecraft at distances 𝑟 < 𝑅 from its center. It is known that a spherical 

cloud layers, lying at a distance greater than r, does not affect the spacecraft, so the total active 

force is derived as 

 
𝐹(𝑟) = −𝐺

𝜌4∙
4

3
𝜋𝑟3

𝑟2 𝑚 = −
4

3
𝜋𝐺𝜌4𝑚𝑟, (28) 

and the corresponding potential energy is found in the form 

 𝑈(𝑟) = − ∫ 𝐹(𝑟)𝑑𝑟 =
2

3
𝜋𝐺𝜌4𝑚𝑟2 + 𝐶 = 𝐺

𝑀𝑚

2𝑅3 𝑟2 + 𝐶.  (29) 

To determine the integration constant 𝐶, we recall that the potential energy must be a continuous at 

the point 𝑟 = 𝑅, such that 

 𝐺
𝑀𝑚

2𝑅3 𝑅2 + 𝐶 = −𝐺
𝑀𝑚

𝑅
,  (30) 

or finally for 𝑟 < 𝑅 

 𝑈(𝑟) =
𝐺𝑀𝑚

2𝑅3 𝑟2 −
3𝐺𝑀𝑚

2𝑅
.  (31) 

At the time moment when the distance to the cloud center reaches its minimum value, the radial 

velocity turns zero. Then, from the laws of conservation of energy and angular momentum we have 

 𝑚𝑣∞
2

2
=

𝑚𝑣0
2

2
+

𝐺𝑀𝑚

2𝑅3 𝑟𝑚𝑖𝑛
2 −

3𝐺𝑀𝑚

2𝑅
,  (32) 

 𝑣0𝑟𝑚𝑖𝑛 = 𝑣∞𝑏,  (33) 
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which results in the following equation  

 1 =
𝑏2

𝑟𝑚𝑖𝑛
2 + 𝑧

𝑟𝑚𝑖𝑛
2 𝑏

𝑅3 − 3𝑧
𝑏

𝑅
,  (34) 

with the solution 

 

𝑟𝑚𝑖𝑛 = √
(

3𝑧𝑏

𝑅
+1)±√(

3𝑧𝑏

𝑅
+1)2−

4𝑧𝑏3

𝑅3

2
𝑧𝑏

𝑅3

.  (35) 

The meaningful root is only the smallest one because there must be 𝑟𝑚𝑖𝑛 = 0  at 𝑏 = 0. Thus, we 

finally obtain 

 

𝑟𝑚𝑖𝑛 = 𝑅√
(

3𝐺𝑀

𝑣∞
2 𝑅

+1)−√(
3𝐺𝑀

𝑣∞
2 𝑅

+1)2−
4𝑏2

𝑅3
𝐺𝑀

𝑣∞
2

2𝐺𝑀

𝑣∞
2 𝑅

= 4.97 × 109𝑚. 
(36) 

2.3 [1.0 points] Minimum velocity 𝑣∞,𝑚𝑖𝑛 , that allows the spacecraft to avoid a collision, 

corresponds to a situation when the spacecraft just touches the cloud as shown below. 

 
In this case, the radial component of the velocity again turns zero, and the laws of conservation of 

energy and angular momentum can be written as: 

 𝑚𝑣∞,𝑚𝑖𝑛
2

2
=

𝑚02

2
+

𝑚𝑢𝜏
2

2
− 𝐺

𝑀𝑚

𝑅
,  (37) 

 𝑢𝜏𝑅 = 𝑣∞𝑏,  (38) 

which yields 

 
𝑣∞,𝑚𝑖𝑛 = √

2𝐺𝑀

𝑅(
𝑏2

𝑅2−1)
= 252 𝑘𝑚/𝑠.  (39) 

2.4 [0.6 points] Assume that the cloud is pulled apart at distances by small layers of thickness ∆𝑟  

so that the cloud always remains symmetrical. To remove a single thin layer at the moment when 

the cloud has a radius 𝑟, it is necessary to do the work 

 
∆𝐴 = 𝐺

(𝜌4
4

3
𝜋𝑟3)(𝜌44𝜋𝑟2∆𝑟)

𝑟
=

16

3
𝜋2𝐺𝜌4

2𝑟4∆𝑟, (40) 

and to pull apart the whole cloud the following work must be done 

 𝐴 =
16

3
𝜋2𝐺𝜌4

2 ∫ 𝑟4∆𝑟
𝑅

0
=

16

15
𝜋2𝐺𝜌4

2𝑅5 = 1.33 × 1045𝐽.  (41) 

 

 Content points  

1.1 

The analogy between the Coulom law and the gravitation law of 

Newton (1): 𝐹 =
1

4𝜋𝜀0

𝑞1𝑞2

𝑟12
2  and 𝐹 = 𝐺

𝑚1𝑚2

𝑟12
2 . 

0.2 

0.7 Formula (2) 𝐸 =
𝜎

2𝜀0
 0.2 

Formula (4) ℎ =
𝑔1

2𝜋𝐺𝜌1
 0.2 

Numerical value of ℎ = 78.0𝑘𝑚 0.1 

1.2 

Formula (5) Ω1 = 2𝜋 0.2 

0.5 Formula (6) 𝛼 =
𝑔1

2𝜋
  or  𝛼 = 𝐺𝜌1ℎ 0.2 

Numerical value of 𝛼 = 1.56 × 10−2𝑚/𝑠2 0.1 
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1.3 

Formula (7) Ω2 =
2

3
𝜋 0.2 

0.7 
Formula (8) 𝑑𝑔2 =

𝑑𝐹

𝑚
= 𝛼Ω2 =

2

3
𝜋𝐺𝜌2Δℎ 0.2 

Formula (9) 𝑔2 =
1

3
𝜋𝐺𝜌2𝑎 0.2 

Numerical value of 𝑔2 = 3.14𝑚/𝑠2 0.1 

1.4 

Formulas /(10) and (11) 
𝑚𝑣1

2

2
− 𝑈1 = 0  

𝑚𝑣2
2

2
− 𝑈2 = 0 0.2 

2.0 

Formula (12) 𝑈𝑐 = 6𝑈1
𝜌3

𝜌2
 0.4 

Formula (13) 𝑈 = 𝐺 ∑
𝑚𝜌3Δ𝑉𝑖

𝑟𝑖
~𝐺𝑚𝜌3𝑎2 0.4 

Formula (14) 𝑈𝑐 = 8
𝑈2

4
= 2𝑈2 0.2 

Formula (15) 𝑈2 = 3𝑈1
𝜌3

𝜌2
 0.4 

Formula (16) 𝑣2 = √
3𝜌3

𝜌2
𝑣1 0.3 

Numerical value of 𝑣2 = 6,30𝑘𝑚/𝑠 0.1 

2.1 

Formula (17) 
𝑚𝑣∞

2

2
=

𝑚𝑢𝑥
2

2
+

𝑚𝑢𝑦
2

2
− 𝐺

𝑀𝑚

𝑅
 0.2 

2.5 

Formula (18) 𝑚𝑢𝑥 − 𝑚𝑣∞ = ∫ 𝐺
𝑀𝑚

𝑟2 𝑐𝑜𝑠𝜑𝑑𝑡 = ∫ 𝐺
𝑀𝑚

𝑟2𝜑̇
𝑐𝑜𝑠𝜑𝑑𝜑 0.4 

Formula (19) 𝑟2𝜑̇ = 𝑣∞𝑏 0.2 

Formula (20) 𝑚𝑢𝑥 − 𝑚𝑣∞ = 𝐺
𝑀𝑚

𝑣∞𝑏
𝑠𝑖𝑛𝜃 0.4 

Formula (21) 𝑚𝑢𝑦 = 𝐺
𝑀𝑚

𝑣∞𝑏
(1 − 𝑐𝑜𝑠𝜃) 0.4 

Formula (23) or analogous 𝑢𝑥 = (1 + 𝑧𝑠𝑖𝑛𝜃)𝑣∞ 0.3 

Formula (24) or analogous 𝑢𝑦 = 𝑧(1 − 𝑐𝑜𝑠𝜃)𝑣∞ 0.3 

Formula (26) or formula (27) 

𝜃 = arcsin

𝑏

𝑅
−

𝐺𝑀

𝑣∞
2 𝑏

√1+(
𝐺𝑀

𝑣∞
2 𝑏

)
2

+ arcsin

𝐺𝑀

𝑣∞
2 𝑏

√1+(
𝐺𝑀

𝑣∞
2 𝑏

)
2
 or 

𝜃 = 2 arctan

1−√1+2
𝐺𝑀

𝑣∞
2 𝑏

𝑏

𝑅
−

𝑏2

𝑅2

𝑏

𝑅
−2

𝐺𝑀

𝑣∞
2 𝑏

  

0.2 

Numerical value of 𝜃 = 0,789 𝑟𝑎𝑑 = 45,2° 0.1 

2.2 

Formula (28) 𝐹(𝑟) = −𝐺
𝜌4∙

4

3
𝜋𝑟3

𝑟2 𝑚 = −
4

3
𝜋𝐺𝜌4𝑚𝑟 0.4 

2.0 

Formula (29) 𝑈(𝑟) =
2

3
𝜋𝐺𝜌4𝑚𝑟2 + 𝐶 = 𝐺

𝑀𝑚

2𝑅3 𝑟2 + 𝐶 0.3 

Formula (30) 𝐺
𝑀𝑚

2𝑅3 𝑅2 + 𝐶 = −𝐺
𝑀𝑚

𝑅
 0.4 

Formula (32) 
𝑚𝑣∞

2

2
=

𝑚𝑣0
2

2
+

𝐺𝑀𝑚

2𝑅3 𝑟𝑚𝑖𝑛
2 −

3𝐺𝑀𝑚

2𝑅
, 0.2 

Formula (33) 𝑣0𝑟𝑚𝑖𝑛 = 𝑣∞𝑏 0.2 

Formula (35) 𝑟𝑚𝑖𝑛 = √
(

3𝑧𝑏

𝑅
+1)±√(

3𝑧𝑏

𝑅
+1)2−

4𝑧𝑏3

𝑅3

2
𝑧𝑏

𝑅3

 0.2 

Correct root is chosen, formula (36) 0.2 

Numerical value of 𝑟𝑚𝑖𝑛 = 4.97 × 109𝑚 0.1 

2.3 Formula (37) 
𝑚𝑣∞,𝑚𝑖𝑛

2

2
=

𝑚02

2
+

𝑚𝑢𝜏
2

2
− 𝐺

𝑀𝑚

𝑅
 0.4 1.0 
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Formula (38) 𝑢𝜏𝑅 = 𝑣∞𝑏 0.3 

Formula (39) 𝑣∞,𝑚𝑖𝑛 = √
2𝐺𝑀

𝑅(
𝑏2

𝑅2−1)
 0.2 

Numerical value of 𝑣∞,𝑚𝑖𝑛 = 252𝑘𝑚/𝑠 0.1 

2.4 

Formula (40) ∆𝐴 =
16

3
𝜋2𝐺𝜌4

2𝑟4∆𝑟 0.3 

0.6 Formula (41) 𝐴 =
16

15
𝜋2𝐺𝜌4

2𝑅5 0.2 

Numerical value of 𝐴 = 1.33 × 1045𝐽 0.1 

Total   10.0 

 

Problem 3. Resistance of a prism (10.0 points) 
1. Mathematical introduction (3.0 points) 

1.1 [0.2 points] From the course of school mathematics it is known that geometrical progression 

terms are explicitly expressed as 

 k

k Ax  .  (1) 

1.2 [0.4 points] Let us express 
k  recurrently in terms of 

1k : 

   1kk
  

and transform it as follows 

      
   

1 1 1 1 1 1

1 1 1 1

3 3 2 3 2 3 2 3 3

2 3 2 3.

k

k k k k k k k k

k k k k

p q p q p p q q

p q p q

      

   

          

   

 (2) 

This equality implies the required recurrence relations in the form 

 
1 1

1 1

2 3

2 .

k k k

k k k

p p q

q p q

 

 

 

 
 (3) 

Inverse relations are obtained analogously 

    
   

1 1

1 1 3 2 3

2 3 2 3,

k k

k k k k

k k k k

p q p q

p q q p

   

         

   
 (4) 

and, thus, 

 
1

1

2 3 ,

2 .

k k k

k k k

p p q

q q p





 

 
 (5) 

1.3 [0.7 points] Calculation of the coefficients is much easier to carry out in series, given that 

0,1 00  qp . The results are shown in Table 1. 

Table 1. 

k  kp  kq  

0 1 0 

1 2 1 

2 7 4 

3 26 15 

4 97 56 

5 362 209 

 

1.4 [0.2 points] Note that 

 1 1
2 3,

2 3
   


 (6) 
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therefore, 

   
k

k 32 3kk qp  .   (7) 

1.5 [1.0 points] Using the hint, we substitute 
k

kx С  into the recurrence relation and obtain the 

equation to determine   in the form 

 11 4   kkk  .  (8) 

After reduction the following quadratic equation is derived 

 0142   , (9) 

which has two solutions 

 322,1  .  (10) 

Consequently, the general solution to the recurrence relation (3) is explicitly written by 

 kk

k CCx 2211   ,   (11) 

where 
21, CC  are arbitrary constants that are determined by the boundary conditions: 

 
0 1 2

0 1 1 2 2 .N N

x A C C A

x B C C B 

   

   
 (12) 

Solving the linear set of equation yields 

 
2

1

1 2 1 2

1 1 2 2 1
2

1 2

,
,

.

N

N N

N N N

N N

B A
C

C C A

C C B A B
C



 

  

 

 
   

 
    

 

 (13) 

Substituting this solution into (11), it is possible to rewrite it in the following symmetrical form 

 

   

2 1
1 1 2 2 1 2

1 2 1 2

1 2 1 21 2 2 1 2 1

1 2 1 2

.

N N
k k k k

k N N N N

N k N k k kN k k k N k

N N N N

B A A B
x C C

A BA B B A

 
   

   

        

   

 

 
    

 

    
 

 

 (14) 

The derivation of the last relation takes into account that according to the Vieta theorem 1

12

  . 

1.6 [0.5 points] In view of the above formulas for the 
k

2,1 , we find that 

     32331121 kkkkk

kkkk qqpqp   ,  (15) 

and, finally, 

    
N

kkN

NN

kkkNkN

k
q

BqAqBA
x







 



21

2121




.  (16) 

   

2. Wire frame in the shape of a prism (7.0 points) 

2.1 [0.8 points] If the vertices of the cube with the same potentials are connected, then, the 

following equivalent circuits are obtained 
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and easily calculated using the standard method as 

 
Ultimately, the cube resistance for the given connection is found as 

 
0

12

7
RR  .  (17) 

2.2 [0.2 points] Visual symmetry of the circuit and of the initial conditions provides obvious 

relations  

 
kk xy  ,  (18) 

 
kkN xx  .

 (19) 

2.3 [1.0 points] The algebraic sum of the currents entering a node is equal to zero, thus, using 

Ohm's law, the following equation is obtained for the node kx
 

 
0

00

1

0

1 






 

R

xy

R

xx

R

xx kkkkkk .  (20) 

Since kk xy  , the recurrence relation holds 

 04 11   kkk xxx .  (21) 

2.4 [0.2 points] For an unambiguous determination of all values kx , we need to explicitly specify 

two boundary conditions. One of those is the initial potential defined as 

 
00 x , (22) 

whereas the other follows from the symmetry condition (19), which is valid for any k , and, in 

particular, for 0k  (despite the fact that the node with the number N  does not exist in the circuit!) 

 
0xxN  . (23) 

2.5 [0.2 points] The recurrence relation (21) has been considered in the Mathematical introduction. 

Therefore, you can use the obtained solution (16) by setting: 

 

N

kkN

N

kkN
k

q

qq

q

BqAq
x





 

0 . (24) 

2.6 [0.4 points] The current in the source circuit is found as the sum of the currents flowing from 

the node 0x : 

 

0

10

0

00

0

10

0

10 24

R

xx

R

yx

R

xx

R

xx
I N 










  . (25) 

Here it has been taken into account that 1100 , xxxy N   . Substituting the values for 10, xx , 

results in 
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 

0 1 1 1 0 1
0 0 0

0 0 0

0 1 0 0

0 0 0

4 2 2 2 1
2 2

2 2 12 2 1 2 2 1
.

N N

N N

N N NN N N

N N N

x x q q q
I

R R q R q

q q pq q p

R q R q R q


 

  

 



     
        

   

    
  

 (26) 

At the last step the relation (5) has been used, 
1 2N N Nq q p   . 

2.7 [0.2 points] By formulation, the input voltage for the given circuit is  

 
00 2U ,  (27) 

concequently, the resistance is found in the following elegant form 

 

1
0

0

0




N

N
N

p

q
R

I

U
R .   (28) 

2.8 [1.0 points] Calculations are easily performed using numerical values in Table 1. 

 

Table 2. Resistances of prisms. 

N  Np  Nq  NR  

1 2 1 0R  

2 7 4 00
3

2

17

4
RR 


 

3 26 15 00
4

3

126

15
RR 


 

4 97 56 00
12

7

197

56
RR 


 

5 362 209 0 0

209 11

362 1 19
R R

  
 

Note that for a cubic prism with 4N   the resistance coincides with that previously found in 2.1.  

2.9 [0.5 points] For 1N  the circuit is obvious: 

 
but for 2N  the prism should be additionally closed as: 

 
In both cases the corresponding resistances coincide with the values shown in Table 2. 

2.10 [1.0 points] The limit of the formula (28) can be found in various ways, for example, 

expressing  

 
   

1 1
, ,

2 2 3

N N N N

N Np q         (29) 

where 132  . 

Then, 
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 

 
0

0 0

1

2 3lim lim lim .
11 31
2

N N

N
N

N N N N NN

q R
R R R R

p

 

 




   



   


 

 (30) 

2.11 [1.5 points] Evaluation gives ries to 

 

0

1
0.577.

3

R

R

    (31) 

Then, we carry out the calculation of the relative error of the approximate expression for different 

values of N  listed in Table 2. 

 

Table 3. 

N  NR  
0R

RN  

N

N

R

RR 
   

1 0R  1.000 -0.423 

2 0

2

3
R  0.667 -0.134 

3 0

3

4
R  0.750 -0.038 

4 0

7

12
R  0.583 -0.010 

5 0

11

19
R

 
0.579 <-0.004 

 

It is seen that already at 4N  the relative error is 1%. Consequently, in this problem four is equal 

to infinity! 

 4 .   (32) 

    

 Content points  

1.1 Formula (1) 
k

k Ax   0.2 0.2 

1.2 

Formula (3) 
11

11

2

32









kkk

kkk

qpq

qpp
 0.2 

0.4 

Formulas (5) 
1

1

2 3

2

k k k

k k k

p p q

q q p





 

 
 0.2 

1.3 

Correct initial values 0,1 00  qp  0.2 

0.7 

Correct values in Table 1. 

Table 1. 

k  kp  kq  

0 1 0 

1 2 1 

2 7 4 

3 26 15 

4 97 56 

5 362 209 
 

0.5 

1.4 Formula (7) 3k

k kp q    0.2 0.2 
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1.5 

Formula (10) 322,1       0.2 

1.0 

Formula (11) 
kk

k CCx 2211    0.2 

Formula (12) 
1 2

1 1 2 2

N N

C C A

C C B 

 

 
 0.2 

Solution (13) 

2
1

1 2

1
2

1 2

N

N N

N

N N

B A
C

A B
C



 



 

 





 
 

 0.2 

Formula (14) 
   1 2 1 2

1 2

N k N k k k

k N N

A B
x

   

 

   



 0.2 

1.6 Formula (16) N k k
k

N

Aq Bq
x

q

 
  0.5 0.5 

2.1 

Equivalent circuit  

 

0.3 

0.8 

Formula (17) 0
12

7
RR   0.5 

2.2 
Formula (18) kk xy   0.1 

0.2 
Formula (19) kkN xx   0.1 

2.3 
Formula (20) 0

00

1

0

1 






 

R

xy

R

xx

R

xx kkkkkk  0.5 
1.0 

Formula (21) 04 11   kkk xxx  0.5 

2.4 
Formula (22) 00 x  0.1 

0.2 
Formula (23) 0xxN   0.1 

2.5 Formula (24) 
N

kkN

N

kkN
k

q

qq

q

BqAq
x





 

0  0.2 0.2 

2.6 

Formula (25) 0 1

0

4 2x x
I

R


  0.2 

0.4 

Formula (26) 0
0

0

2 1N

N

p
I

R q

 
  0.2 

2.7 

Formula (27) 00 2U  0.1 

0.2 
Formula (28) 

1
0

0

0




N

N
N

p

q
R

I

U
R  0.1 

2.8 

Correct values in Table 2. 

Table 2. Resistances of prisms. 

N  Np  Nq  NR  

1 2 1 0R  

1.0 1.0 
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2 7 4 00
3

2

17

4
RR 


 

3 26 15 00
4

3

126

15
RR 


 

4 97 56 00
12

7

197

56
RR 


 

5 362 209 0 0

209 11

362 1 19
R R

  
 

2.9 

Equivalent circuit for 1N  

 

0.1 

0.5 Equivalent circuit for 2N  

 

0.4 

2.10 

Formula (29)    NN

N

NN

N qp   
32

1
,

2

1
 0.5 

1.0 

Formula (30) 0

3

R
R   0.5 

2.11 

Formula (31) 
0

0.577
R

R

   0.2 

1.5 

Correct values in Table 3. 

Table 3. 

N  NR  
0R

RN  

N

N

R

RR 
   

1 0R  1.000 -0.423 

2 0

2

3
R  0.667 -0.134 

3 0

3

4
R  0.750 -0.038 

4 0

7

12
R  0.583 -0.010 

5 0

11

19
R

 
0.579 <-0.004 

 

1.0 

Formula (32) 4  0.3 

Total   10.0 

 

 


