РЕШЕНИЕ ЗАДАЧИ ЭКСПЕРИМЕНТАЛЬНОГО ТУРА

Крутильный маятник (15,0 балла)

Часть 1. Свободные малые колебания (5,0 балла)

1.1 Результаты измерений зависимости периода колебаний от длины нитей приведены в Таблице 1. Для каждой длины нитей l проведено 3 измерения времен по 10 колебаний. Период колебаний T рассчитан по среднему значению измеренных времен.

Таблица 1.

<i>l</i> , см	<i>t</i> ₁ , c	t_2 , c	<i>t</i> ₃ , c	T,c	T^2, c^2
61	48,19	48,02	48,34	4,82	23,22
49	43,57	43,31	43,81	4,36	18,98
39	38,56	38,34	38,37	3,84	14,76
28	33,1	32,94	32,78	3,29	10,85
19	26,44	27,03	26,62	2,67	7,13
10	18,91	19,35	19,22	1,92	3,67

1.2 При повороте болтов в горизонтальной плоскости на малый угол φ нити подвеса отклонятся от вертикали на малый угол α . Связь между этими углами геометрическая и имеет вид

$$\frac{h}{2}\varphi = l\alpha \quad \Rightarrow \quad \alpha = \frac{h}{2l}\varphi, \tag{1}$$

где l – длина нитей подвеса, h – расстояние между ними.

При таком повороте болты приподнимутся, при этом потенциальная энергия возрастет на величину

$$\Delta U = mgl(1 - \cos \alpha) \approx mgl \frac{\alpha^2}{2} = \frac{1}{2} mgl \left(\frac{h}{2l}\varphi\right)^2.$$
 (2)

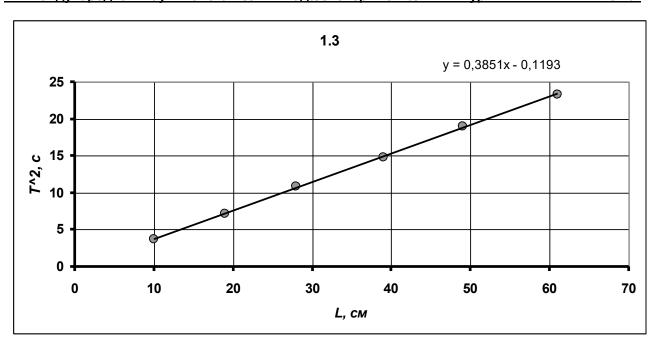
Уравнение закона сохранения энергии при кругильных колебаниях имеет вид

$$\frac{I\omega^2}{2} + \frac{1}{2}mgl\left(\frac{h}{2l}\varphi\right)^2 = E = const, \qquad (3)$$

где I — момент инерции маятника.

Закон сохранения энергии (3) соответствует гармоническим колебаниям с периодом

$$T = 4\pi \sqrt{\frac{I}{mg} \frac{l}{h^2}} \,. \tag{4}$$


1.3 Для проверки полученной формулы следует построить график зависимости квадрата периода от длины нитей 1 (рис. 1.1) Полученная прямо пропорциональная зависимость доказывает справедливость формулы (4).

Коэффициенты линейной зависимости $T^2 = al + b$, рассчитанные по МНК, оказались равными

$$a = (0,385 \pm 0,009) \frac{c^2}{c_M}, \quad b = -(0,12 \pm 0,3) c^2.$$
 (5)

Так как $\Delta b < b$, то зависимость можно считать прямо пропорциональной.

 $^{^{1}}$ Допустима и другая линеаризация $T(\sqrt{l})$, двойной логарифмический масштаб (с доказательством того, что коэффициент наклона равен 0,5)

1.4 Из формулы (4) следует, что период колебаний может быть выражен через радиус инерции следующим образом

$$T = 4\pi \sqrt{\frac{I}{mg} \frac{l}{h^2}} = 4\pi \sqrt{\frac{mR^2}{mg} \frac{l}{h^2}} = \frac{4\pi R}{h\sqrt{g}} \sqrt{l} .$$
 (6)

Следовательно, найденный коэффициент наклона графика 1.3 позволяет рассчитать радиус инерции по формуле

$$a = \left(\frac{4\pi R}{h\sqrt{g}}\right)^2 \quad \Rightarrow \quad R = h\frac{\sqrt{ag}}{4\pi} = 4,33cM. \tag{7}$$

Расстояние между нитями $h = (2,8\pm0,1)c_M$.

Погрешность найденного значения рассчитывается по формуле

$$\Delta R = R \sqrt{\left(\frac{\Delta h}{h}\right)^2 + \left(\frac{1}{2}\frac{\Delta a}{a}\right)^2} = 4,33 \sqrt{\left(\frac{0,1}{2,8}\right)^2 + \left(\frac{1}{2}\frac{0,009}{0,385}\right)^2} = 0,16cm. \tag{8}$$

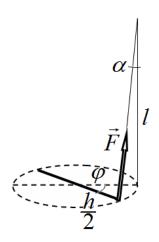
Часть 2. Малые колебания с дополнительным натяжением (5,0 балла)

2.1 Результаты измерений зависимости периода колебаний от силы натяжения нитей приведены в таблице 2.

Таблица 2.

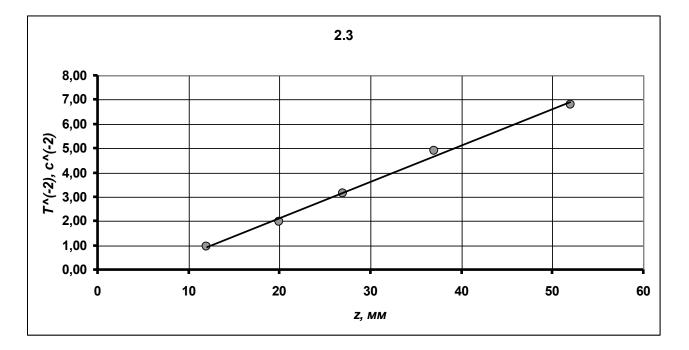
z, MM	t_1 , c	t_2 , c	<i>t</i> ₃ , c	T,c	T^{-2}, c^{-2}
12	10,22	10,28	10,40	1,03	0,94
20	7,10	7,03	7,18	0,71	1,98
27	5,63	5,62	5,69	0,56	3,14
37	4,53	4,50	4,53	0,45	4,89
52	3,75	3,88	3,87	0,38	6,81

2.2 Момент возвращающей силы при наличии натяжения нитей \vec{F} пропорционален углу закручивания и модулю силы натяжения. Изменение силы натяжения при закручивании является поправкой более высоко порядка.


Поэтому уравнение вращательного движения в данном случае имеет вид

$$I\ddot{\varphi} = -kF\varphi \,. \tag{9}$$

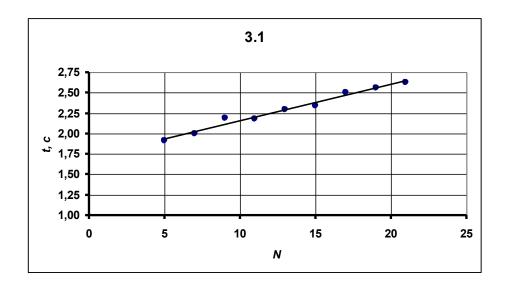
Следовательно, период этих колебаний обратно пропорционален корню из натяжения нитей


$$T = \frac{C}{\sqrt{F}} = \frac{A}{\sqrt{z}},\tag{10}$$

где C, A — некоторые постоянные величины.

2.3 Для проверки данной зависимости следует построить график зависимости $T^{-2}(z)$. Другие виды линеаризации в данном случае менее надежны, так как при измерении деформации z почти неизбежно появление некоторой постоянной составляющей.

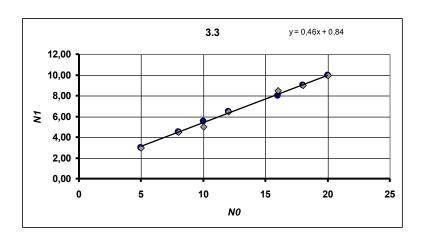
График зависимости $T^{-2}(z)$ показан на рис. 2.3.


Полученная линейная зависимость подтверждает теоретический вывод о виде зависимости периода от силы натяжения нитей.

Часть 3. Закручивание на большие углы (5,0 балла)

3.1 Зависимость времени раскручивания от угла закручивания приведена в таблице 3 и на рис. 3.1

Таблица 3.


тиолици э.		
N	<i>t</i> , <i>s</i>	
5	1,91	
7	2,00	
9	2,19	
11	2,18	
13	2,29	
15	2,34	
17	2,50	
19	2,56	
21	2,63	

- **3.2** Время раскручивания можно считать как четверть периода колебаний. Время раскручивания увеличивается с ростом «амплитуды», это означает, что потенциальная энергия возрастает медленнее, чем при гармонических колебаниях, т.е. $\gamma < 2$.
- **3.3.** Зависимость числа полуоборотов N_1 при повторном закручивании от начального закручивания N_0 приведена в таблице 4 и на графике 3.3. Полученные зависимости практически не зависят от силы натяжения нитей.

Таблица 4.

	z = 35mm	z = 20mm
N_{0}	N_1	N_1
20	10,0	10,0
18	9,0	9,0
16	8,0	8,5
12	6,5	6,5
10	5,5	5,0
8	4,5	4,5
5	3,0	3,0

Данная зависимость может быть описана линейной функцией

$$N_1 = 0.46N_0 + 0.84. (11)$$

3.4-3.5 Зависимости числа полуоборотов N_1 при повторном закручивании от начального закручивания N_0 при подъеме с грузом и подъеме без груза приведены в таблице 5 и на графике 3.4. Полученные зависимости являются линейными. Существенно, что при подъеме без дополнительного груза значения N_1 заметно выше, что говорит о подкачке энергии в ходе опускания груза. Кроме того, последнюю зависимость нельзя считать прямо пропорциональной.

Таблица 5.

	С	Без
	грузом	груза
N_{0}	N_1	N_1
20	8,0	10,0
18	7,0	9,0
15	5,5	8,0
13	4,0	7,5
10	2,5	6,0
8	1,0	5,5

Полученные зависимости могут быть описаны линейными функциями

$$N_1 = 0.58N_0 - 3.5$$

$$N_1 = 0.37N_0 + 2.5$$
(12)

Схема оценивания

	Критерии оценивания	Всего	Баллы
	Часть 1.Свободные малые колебания.	5	
1.1	Оценивается, если результаты измерений периодов	2	
	отличаются от официальных не более чем на 25%.		
	Число различных значений длины:		
	5 и более (3-4; меньше 3);		0,8(0,4;0)
	Периоды измерены по времени		
	He менее 10 колебаний (5-9; менее 5);		0,3(0,1;0)
	Рассчитаны периоды для всех измерений;		0,2
	Диапазон изменения длины		0,7
	He менее 40 см (30-40 см, 20-30 см; менее 20 см)		(0,5;0,3;0)
1.2	Вывод теоретической формулы:	0,5	
	Получена точная формула $T = 4\pi \sqrt{\frac{I}{mg} \frac{l}{h^2}}$;		0,5
	Получен только вид зависимости $T = A\sqrt{l}$ (или не верный коэффициент при \sqrt{l})		(0,2)
1.3	Оценивается, если оценены результаты измерений п. 1.1!	1	
	Предложена правильная линеаризация $T^2(l)$, $T(\sqrt{l})$;		0,5
	Предложена линеаризация $\ln T(\ln l)$		(0,2)
	Доказана степень 1/2		(0,3)
	Построение графика (не линеаризованная зависимость не оценивается):		
	- оси подписаны и оцифрованы;		0,1

	- Нанесены все экспериментальные точки;		0,1
	- проведена сглаживающая прямая;		0,1
	Получена линейная зависимость;		0,2
1.4	Оценивается, если оценены результаты измерений п. 1.1!	1,5	0,2
	Радиус инерции рассчитан по всем значениям периодов;	_,-	0,3
	Расчет по 2 точкам;		(0,2)
	Расчет по 1 точке;		(0,1)
	Найден коэффициент наклона линеаризованной зависимости:		
	По МНК;		0,2
	Графически;		(0,1)
	Измерено расстояние между нитями		0,1
	Указана погрешность		0,1
<u>. </u>	Формула для расчета радиуса инерции		0,1
	Численное значение радиуса инерции в диапазоне:		
	4,2-4,4 см $(4,0-4,6$ см; вне диапазона)		0,4(0,2;0)
	Расчет погрешности:		
	- погрешность коэффициента наклона;		0,1
	- погрешность расстояния между нитями;		0,1
	- общая погрешность;		0,1
	Часть 2. Малые колебания с натяжением	5	
2.1	Оценивается, если результаты измерений периодов	2	
	отличаются от официальных не более чем на 50%.		
	Число различных значений натяжения:		
	5 и более (<i>3-4</i> ; <i>меньше 3</i>);		0,8(0,4;0)
	Периоды измерены по времени		0.0(0.1.0)
	He менее 10 колебаний (5-9; менее 5);		0,3(0,1;0)
<u> </u>	Рассчитаны периоды для всех измерений;		0,2
	Диапазон изменения периодов колебаний		· ·
2.2	Не менее чем в 2,5 раза (2,0 раза, 1,5 раз; менее)	1	(0,5;0,3;0)
2.2	Вывод теоретической формулы:	1	
	Обоснована формула $T = \frac{A}{\sqrt{F}}$ (постоянство силы натяжения,		1,0 (0,3;
	возвращающий момент пропорционален F , уравнение		0,3; 0,4)
	колебаний);		
	T A (c)		
	Указан вид зависимости $T = \frac{A}{\sqrt{F}}$ (без доказательства)		(0.2)
			(0,2)
2.3	Оценивается, если оценены результаты измерений п. 2.1!	2	
4.3	Оценивается, если оценены результаты измерении п. 2.1? Предложена правильная линеаризация $T^{-2}(z)$;	4	1,0
			1,0
	Предложена линеаризация $T\left(\frac{1}{\sqrt{z}}\right)$		(0,5)
	Предложена линеаризация $\ln T(\ln l)$, Доказана степень $1/2$		(0,3+0,2)
	Построение графика (не линеаризованная зависимость не		
	построение графика (не линеиризовинния зависимость не оценивается):		
	оценивается) оси подписаны и оцифрованы;		0,1
	- бей подписаны и оцифрованы, - Нанесены все экспериментальные точки;		$\begin{bmatrix} 0,1\\0,1 \end{bmatrix}$
	- проведена сглаживающая прямая;		0,1
	Получена линейная зависимость;		0,7
	Часть 3. Закручивание на большие углы	5	,,,
			1
3.1	Оценивается, если результаты измерений времен	1,0	

	Пионо портини и руковорий М		<u> </u>
	Число различных значений <i>N</i> : 5 и более (<i>3-4; меньше 3</i>);		0,4 (0,2;0)
	Проведено не менее 3 повторных измерений;		0,4 (0,2,0)
			0,1
	Получена возрастающая зависимость $t(N)$		0,2
	Построение графика		
	(оценивается, если оценены результаты измерений):		0.1
	- оси подписаны и оцифрованы;		0,1
	- Нанесены все экспериментальные точки;		0,1
2.2	- проведена сглаживающая прямая;	0.2	0,1
3.2	Показатель степени $\gamma < 2$	0,3	0,2
	, ·		0,2
	Обоснование: U возрастает медленнее, чем при гармонических		0.1
2.2	колебаниях		0,1
3.3	Оценивается, если значения коэффициента наклона лежат	1,5	
	в диапазоне 0,35-0,65		
	Число различных значений N_0 :		0.5(0.2.0)
	5 и более (<i>3-4; меньше 3</i>);		0,5(0,2;0)
	Проведено не менее 3 повторных измерений;		0,1
	Получена линейная возрастающая зависимость;		0,2
	Построение графика		
	(оценивается, если оценены результаты измерений):		
	- оси подписаны и оцифрованы;		0,1
	- Нанесены все экспериментальные точки;		0,1
	- проведена сглаживающая прямая;		0,1
	Предложена линейная функция;		0,1
	Найдены численные значения параметров функции;		0,2
	Коэффициенты наклона одинаковы для двух натяжений;		0,1
3.4	Оценивается, если значения коэффициента наклона лежат	1	
	в диапазоне 0,25-0,65		
	Число различных значений N_0 :		0,3(0,1;0)
	5 и более (<i>3-4; меньше 3</i>);		
	Получена линейная возрастающая зависимость;		0,1
	Построение графика		
	(оценивается, если оценены результаты измерений):		
	- оси подписаны и оцифрованы;		0,1
	- Нанесены все экспериментальные точки;		0,1
	- проведена сглаживающая прямая;		0.1
	Предложена линейная функция;		0,1
	Найдены численные значения параметров функции;		0,2
3.5	Оценивается, если значения коэффициента наклона лежат	1,2	
	в диапазоне 0,25-0,75 и есть сдвиг прямой!		
	Число различных значений N_0 :		
	5 и более (<i>3-4; меньше 3</i>);		0,4(0,2;0)
	Получена линейная возрастающая зависимость со сдвигом		0,2+0,1
	вверх;		
	Построение графика		
	(оценивается, если оценены результаты измерений):		
	- Нанесены все экспериментальные точки;		0,1
	- проведена сглаживающая прямая;		0,1
	Предложена линейная функция;		0,1
	Найдены численные значения параметров функции;		0,2