1. Each integral point of the plane is coloured white or blue. Prove that one can choose a colour so that
for every positive integer n there i1s a triangle of area n with three vertices of the chosen colour.

Solution. If every two neighbouring points (that is, points at distance 1) have different colours then,
in fact, we have a monochromatic lattice of v/2 x v/2 squares, where triangle with any integral area is easily
found.

When this is not the case, we consider neighbouring points A and B (AB = 1) of the same colour (say
white). To find a triangle of area n, we need a white point on the line parallel to AB at the distance 2n. If
there is such point for each n, we are done. Otherwise, we have a line £ with blue points only.

Consider a line £; “next to £”, that is, the line parallel to £ at distance 1 from 1t. If it contains a blue
point, we have a triangle with blue vertices of area % for each positive integer n.

The only remaining case is that of line £ containing only white points. Then we consider the line £y # ¢
at distance 1 from £;, and again, if there is a white point on ¢y, we are done. Now, if all points of ¢y are
blue, then for each n we have a triangle of area n with three blue vertices.



2. Inside the triangle ABC' a point M is given. The line BM meets the side AC at N. The point K
is symmetrical to M with respect to AC. The line BK meets AC' at P. If ZAMP = /CMN, prove that
/ABP = LCBN.

Solution. Let D, E, F be the feet of perpendiculars to BP, M P, BM respectively drawn through A,
and G, ), H be the feet of perpendiculars to BP, M P, BM respectively drawn through C'.

Note that AAFM ~ ACQM and AAME ~ ACM H, therefore % = % = %. By symmetry we
have also CQ = CG, AE = AD and LFAD = (FBD = LGCH, therefore % = %. It follows that
AFAD ~ AGCH, thus LAFD = /CGH.

Now the points A, B, F', D are concyclic, therefore /ZABP = /AF D, and similarly /CBN = /CGH.
Combining that with the above, we have ZABP = ZLUBN.



Problem 3
Setting * = 1, y = 0 in the initial equation
f@ +y* +ay) = 2" f2) +y* f(y) + f(zy) (1)

gives f(0) = 0.
Taking y = 0 in (1) we obtain

fla®) =22 f(x). (2)
Substituting y = —x into (1) leads to
f(=a®) = a*f(a) + 2 f(—x) + f(=2%) = f(=2) = = f(x). (3)

From (1) and (3) it follows that
F@ v’ Fay) + f(@ =y — xy)
=2 f(a) + ¥ fly) + fley) + 2 f(2) = fly) — flay) = 22 f(2) = 2f (). (4)
Note that for any a, b € R there exist z, y € R such that
a=2"+y° +ay, b=z"—y’—zy.
To this end, we take z, y that satisfy the equations

3_a—l—b 3 _a—b
= y tay = 3

(we see that functions in left hand sides of the equations have the ranges R). There-
fore, we can rewrite (4) in the form

flay+ i) =27(“F0), aver
Thus, we have
1)+ fla+0) =27 (“E2) 5 flatb) = fla) + 1) 0, bR

Further, we change  — x4+ 1 in (2), denote ¢ = f(1), and from additivity of f obtain

S 4+1)7°) = (e +1)*f(e +1)
& fa?)+3f(2*) +3f(x) + ¢ = (2 + 22 + 1)(f(2) + ¢)
& 3f(2?) = (2z = 2) f(x) + (2 + 22)c (5)

Substituting « — —x in (5), we get
3£(2) = (=20 — ) f(—0) + (& — 2e)e = (20 + 2)f(2) + (2= 20)e  (6)
From the equality of right hand sides of (5) and (6) we obtain
f(z) = ca.

It is easy to verify that this function satisfies the given equation for all ¢ € R.
Answer: f(z) = cx,c € R.



