
XVII International Zhautykov Olympiad in Mathematics. Solutions

�1. Prove that for some positive integer n the remainder of 3n when divided by 2n is greater than 102021.
Solution I. We choose a positive integer M such that 2M > 102022, and consider the remainder of 3M

when divided by 2M :
3M ≡ r (mod 2M), 0 < r < 2M .

If r > 102021, then M is the desired number. Otherwise we choose the smallest integer k for which 3kr >
> 102021. Then 3kr < 102022 < 2M . Since 3k+M ≡ 3kr (mod 2M), the remainder of 3k+M when divided by
2k+M has the form 3kr + 2Ms with some positive integer s, and is therefore greater than 102021.

Solution II. We choose a positive integer k such that 2k+2 > 102021. We are going to determine
v2(3

2k − 1), i. e. the largest m such that 2m divides 32k − 1. According to well-known lifting the exponent
lemma,

v2(3
2k − 1) = v2(3

2 − 1) + k − 1 = k + 2.

Then the number n = 2k satis�es the condition, Indeed, if r is the remainder when 3n is divided by 2n,
then r ≡ 32k (mod 22k) and therefore r ≡ 32k (mod 2k+3) (we use the fact that 2k ≥ k + 3). Since 2k+2

divides r − 1 and 2k+3 does not, r ≡ 1 + 2k+2 (mod 2k+3), thus r ≥ 1 + 2k+2 > 102021.
Solution III. Choose a positive integer k such that 3k > 102021, and a positive integer m such that

2m > 3k. There exists a positive integer T such that 3T ≡ 1 (mod 2m) (we may take, for instance, T =
= 2m−2). Then for all positive integral s

3k+sT ≡ 3k (mod 2m),

that is, 3k+sT leaves the remainder 3k after division by 2m and, therefore, a remainder not less than
3k > 102021 after division by any higher power of 2. Now we can take n = k + sT such that k + sT > m.



�2. In a convex cyclic hexagon ABCDEF BC = EF and CD = AF . Diagonals AC and BF intersect
at point Q, and diagonals EC and DF intersect at point P . Points R and S are marked on the segments
DF and BF respectively so that FR = PD and BQ = FS. The segments RQ and PS intersect at
point T . Prove that the line TC bisects the diagonal DB.

First solution. It follows obviously that BF ‖ CE and AC ‖ DF . We denote the circumcircles of
4ABQ and 4DEP by ω1 and ω2, respectively. Note that the lines AD and BE are internal common
tangents to ω1 and ω2. Indeed, ∠BAQ = ∠BEC = ∠EBQ, i. e., EB is tangent to ω1; the other tangencies
are established similarly. Note that CPFQ is a parallelogram. Then CQ = FP = RD, that is, CQRD is
also a parallelogram as well as CPSB. The lines BC and DC are not parallel to BD. Therefore RQ and
PS intersect the line BD; we denote the intersections by X and Y respectively. It follows that X lies on
ω1, since ∠QAB = ∠CDB = ∠BXQ. Similarly, Y lies on ω2. Thus

DB ·DX = DA2 = BE2 = BD ·BY,

hence DX = BY , or BX = DY . Let TC and BD meet at Z. Then it follows from TX ‖ CD and
TY ‖ BC that

DZ

DX
=
CZ

CT
=
BZ

BY
,

which immediately gives DZ = BZ.
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Note. The equality BX = DY can be also proved by applying Menelaus theorem to 4BDF and the
lines R−Q−X and S − P − Y .

Second solution. We follow the �rst solution, using BF ‖ CE and AC ‖ DF to note that CPFQ,
CQRD, and CPSB are parallelograms.

Let N and M be points on the segments CQ and RN respectively such that FRNQ and FRMS are
parallelograms. Then SM = FR = PD and SM ‖ PD, that is, SMDP is also a parallelogram, hence
DM = PS = CB and DM ‖ CB, therefore DMBC is a parallelogram, and CM bisects BD. It remains
to prove that T , M , C are collinear.

Applying Menelaus theorem to4FRQ and the line P − T − S (and bearing in mind the parallelograms
found above) we have

1 =
FP

PR
· RT
TQ
· QS
SF

=
QC

CN
· RT
TQ
· NM
MR

,

that is,
QC

CN
· RT
TQ
· NM
MR

= 1. (1)

The collinearity T , M , C follows from (1) immediately by converse Menelaus theorem for 4QNR.
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�3. Let n ≥ 2 be an integer. Elwyn is given an n×n table �lled with real numbers (each cell of the table
contains exactly one number). We de�ne a rook set as a set of n cells of the table situated in n distinct
rows as well as in n distinct columns. Assume that, for every rook set, the sum of n numbers in the cells
forming the set is nonnegative.

By a move, Elwyn chooses a row, a column, and a real number a, and then he adds a to each number
in the chosen row, and subtracts a from each number in the chosen column (thus, the number at the
intersection of the chosen row and column does not change). Prove that Elwyn can perform a sequence of
moves so that all numbers in the table become nonnegative.

Common remarks. We collect here several de�nitions and easy observations which will be used in the
solutions.

A rook set is nonnegative (resp., vanishing) if the sum of the numbers in its cells is nonnegative (resp.,
zero). An n × n table �lled with real numbers is good (resp., balanced) if every rook set is nonnegative
(resp., vanishing).

Notice that the sum of numbers in any rook set does not change during Elwyn's moves, so good
(balanced) tables remain such after any sequence of moves. Also, notice that the rows and/or columns of
the table can be permuted with no e�ect on the condition of the problem, as well as on the desired result.

The proofs of the following two easy propositions can be found in the addendum after Solution 2.

Proposition 1. Assume that a1, a2, . . . , an and b1, b2, . . . , bn are two sequences of real numbers with equal
sums. Then Elwyn can perform a sequence of moves resulting in adding ai to all cells in the ith row, and
subtracting bj from all numbers in the jth column, for all i, j = 1, 2, . . . , n.

Proposition 2. If an n × n table B is balanced, then Elwyn can perform several moves on that table
getting a table �lled with zeros.

Solution 1. We start with the following known consequence of Hall's lemma.

Lemma. Let G = (U t V,E) be a bipartite multigraph with parts U and V , both of size n. Assume that
each vertex has degree k; then the edges can be partitioned into k perfect matchings.

Proof. Induction on k; the base case k = 1 is trivial. To perform the step, it su�ces to �nd one perfect
matching in the graph: removing the edges of that matching, we obtain a graph with all degrees equal
to k − 1.

The existence of such matching is guaranteed by Hall's lemma. Indeed, let U ′ be any subset of U ,
and let V ′ be the set of vertices adjacent to U ′. Put u = |U ′| and v = |V ′|. The total degree of vertices
in U ′ is ku. so the total degree of vertices in V ′ is at least ku; hence ku ≤ kv and therefore u ≤ v, which
establishes the conditions of Hall's lemma.

The following claim is the principal step in this solution.

Claim. In any good table, one can decrease some numbers so that the table becomes balanced.

Proof. Say that a cell in a good table is blocked if it is contained in a vanishing rook set (so, decreasing
the number in the cell would break goodness of the table). First, we show that in any good table one can
decrease several numbers so that the table remains good, and all its cells become blocked.

Consider any cell c; let ε be the minimal sum in a rook set containing that cell. Decrease the number
in c by ε; the obtained table is still good, but now c is blocked. Apply such operation to all cells in the
table consecutively; we arrive at a good table all whose cells are blocked. We claim that, in fact, this table
is balanced.

In the sequel, we use the following correspondence. Let R and C be the sets of rows and columns of
the table, respectively. Then each cell corresponds to a pair of the row and the column it is situated in;
this pair may be regarded as an edge of a bipartite (multi)graph with parts R and C. This way, any rook
set corresponds to a perfect matching between those parts.

Arguing indirectly, assume that there is a non-vanishing rook set S = {s1, s2, . . . , sn}. Each cell si is
contained in some vanishing rook set Vi. Now construct a bipartite multigraph G = (RtC,E), introducing,
for each set Vi, n edges corresponding to its cells (thus, G contains n2 edges some of which may be parallel).



Mark each edge with the number in the corresponding cell. Since the sets Vi are all vanishing, the sum of
all n2 marks is zero.

Now, remove n edges corresponding to the cells of S, to obtain a graph G′. Since the sum of numbers
in the cells of S is positive, the sum of the marks in G′ is negative. On the other hand, the degree of every
vertex in G′ is n− 1, so by the Lemma its edges can be partitioned into n− 1 perfect matchings. At least
one of the obtained matchings has negative sum of marks; so this matching corresponds to a rook set with
a negative sum. This is impossible in a good table; this contradiction �nishes the proof.

Back to the problem, let T be Elwyn's table. Applying the Claim, decrease some numbers in it to get
a balanced table B. By Proposition 2, Elwyn can perform some moves on table B so as to get a table
�lled with zeros. Applying the same moves to T , Elwyn gets a table where all numbers are nonnegative,
as required.

Solution 2. Say that the badness of a table is the sum of absolute values of all its negative entries. In
Step 1, we will show that, whenever the badness of a good table is nonzero, Elwyn can make some moves
decreasing the badness. In a (technical) Step 2, we will show that this claim yields the required result.

Step 1. Let r be a row containing some negative number. Mark all cells in row r containing negative
numbers, and mark all cells in other rows containing nonpositive numbers. Then there is no rook set
consisting of marked cells, since that set would not be nonnegative.

By K�onig's theorem (which is equivalent to Hall's lemma), for some a and b with a + b < n, one can
choose a rows and b columns such that their union contains all marked cells; �x such a choice. Number
the rows from top to bottom, and the columns from left to right. We distinguish two cases.

Case 1: Row r is among the a chosen rows.
Permute the rows and columns so that the top a rows and the right b columns are chosen. Next, if

row r contains a negative number in some of the a leftmost entries, swap the column containing that entry
with the (n− b)th one (recall that n− b > a). As a result, there exists x > a such that the xth left entry
in row r is negative (while the chosen columns are still the b rightmost ones).

Now, rectangle P formed by the bottom n − a rows and the left a columns contains only positive
numbers, as it contains no marked cells, as well as no cells from row r. Let m be the minimal number in
that rectangle.

Let Elwyn add m to all numbers in the �rst a rows, and subtract m from all numbers in the �rst a
columns. All numbers which decrease after this operation are situated in P , so there appear no new cell
containing a negative number, and no negative number decreases. Moreover, by our choice, at least one
negative number (situated in row r and column x) increases. Thus, the badness decreases, as desired.

Case 2: Row r is not among the a chosen rows.
Add row r to the a chosen rows, and increase a by 1. Notice that the negative numbers in row r are

covered by the b chosen columns. As in the previous case, we permute the rows and columns so that the
top a rows and the tight b columns are chosen. All negative numbers in row r automatically come to the
right b columns. Now the above argument applies verbatim.

Step 2. We show that among the tables which Elwyn can obtain (call such tables reachable), there exists
a table with the smallest badness. Applying the argument in Step 1 to that table, we get that its badness
is zero, which proves the claim of the problem.

Notice that the e�ect of any sequence of Elwyn's moves has the form described in Proposition 1.
Moreover, subtraction of some number ε from all the ai and the bi provides no e�ect on the result. Hence,
we may assume that the sums of the ai and of the bi are both zero.

Let tij denote the (i, j)th entry of the initial table T . For any two sequences a = (a1, . . . , an) and
b = (b1, . . . , bn) both summing up to zero, denote by T (a,b) the table obtained from T by adding ai to all
numbers in the ith row, and subtracting bj from all numbers in the jth column, for all i, j = 1, 2, . . . , n;
in particular, T = T (0,0), where 0 = (0, 0, . . . , 0). Let f(a,b) denote the badness of T (a,b). Clearly,
function f is continuous. Now we intend to bound the set of values that make sense to put in sequences a
and b.



Let m be the maximal number in T . Take any a and b summing up to zero, such that some ai is
smaller than −M = −(m+ b). Then there exists an index j with bj ≥ 0; hence the entry (i, j) in T (a,b)
is tij + ai − bj < m−M + 0 = −b, so f(a,b) > b = f(0,0).

So, all pairs of sequences a and b satisfying f(a,b) ≤ b should also satisfy ai ≥ −M and bj ≥ −M ,
and hence ai ≤ nM and bj ≤ nM as well (since each of the sequences sums up to zero). Thus, in order to
minimize f(a,b), it su�ces to consider only those a and b whose entries lie in [−M,nM ]. Those values
form a compact set, so the continuous function f attains the smallest value on that set.

Addendum. Say that the price of Elwyn's move is the number a chosen on that move.

Proof of Proposition 1. Let Elwyn perform a move of price a to row i and column j, and then a move of
price −a to row i′ and the same column j. The result will consist in adding a to row i and subtracting a
from row i′. Similar actions can be performed with columns.

So, Elwyn may add Σ = a1 + · · ·+ an to the numbers in the �rst row and subtract Σ from those in the
�rst column, and then distribute those increments and decrements among the rows and columns, using
the above argument.

Proof of Proposition 2. It is easy to see, using Proposition 1, that Elwyn can vanish all numbers in the
�rst column, as well as all numbers in the �rst row, except for the last its entry.

The resulting table is also balanced; denote the number in its cell (i, j) by dij. For any i, j > 1 with
j < n, there are two rook sets R and R′, one containing cells (1, 1) and (i, j), and the other obtained by
replacing those by cells (1, j) and (i, 1). The sums in those two sets are both zero, so

dij = di1 + d1j − d11 = 0.

Hence, only the nth column of the obtained table might contain nonzero numbers. But, since each entry
in the nth column is contained in some (vanishing) rook set, that entry is also zero.

Solution 3 (sketch). We implement some tools from multi-dimensional convex geometry.

Each table can be regarded as a point in Rn×n. The set G of good tables is a convex cone determined
by n! non-strict inequalities (claiming that the rook sets are nonnegative). Thus this cone is closed.

The set T of tables which can be transformed, by a sequence of Elwyn's moves, into a table with
nonnegative entries, is also a convex cone. This cone is the Minkowski sum of the (closed) cone N of
all tables with nonnegative entries and the linear subspace V of all tables Elwyn can add by a sequence
of moves. Such sum is always closed (a pedestrian version of such argument is presented in Step 2 of
Solution 2).

It is easy to see that T ⊆ G; we need to show that T = G. Arguing indirectly, assume that there is some
table t ∈ G \ T . Then there exists a linear function f separating t and T , that is � f takes nonnegative
values on T but a negative value on t.

This function f has the following form: Let x ∈ Rn×n be a table, and denote by xij its (i, j)th entry.
Then

f(x) =
n∑

i,j=1

fijxij,

where fij are some real constants. Form a table F whose (i, j)th entry is fij.
Since f(x) ≥ 0 for all tables in N having only one nonnegative entry, we have fij ≥ 0 for all i and j.

Moreover, f must vanish on all tables in the subspace V , in particular � on each table having 1 in some
row, −1 in some column, and 0 elsewhere (the intersection of the row and the column also contains 0).
This means that the sum of numbers in any row in F is equal to the sum of the numbers in any its column.

Now it remains to show that F is the sum of several rook tables which contain some nonnegative
number p at the cells of some rook set, while all other entries are zero; this will yield f(t) ≥ 0 which is not
the case. In other words, it su�ces to prove that one can subtract from F several rook tables to make it
vanish. This can be done by means of Hall's lemma again: if the table is still nonzero, it contains n positive
entries forming a rook set, and one may make one of them vanish, keeping the other entries nonnegative,
by subtracting a rook table.



�4. A circle with radius r is inscribed in the triangle ABC. Circles with radii r1, r2, r3 (r1, r2, r3 < r) are
inscribed in the angles A, B, C so that each touches the incircle externally. Prove that r1 + r2 + r3 ≥ r.

First solution. Let ω be the incircle of 4ABC, I its center, and p = (AB + BC + AC)/2 its
semiperimeter. We denote the tangency points of the sides BC, AC, AB with ω by A0, B0, C0 respectively.
Let the circle of radius r1 touches ω at A1.
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We draw a tangent ` to ω such that ` ‖ BC. Let r′1 be the inradius of the triangle formed by the lines
AB, AC, `. The line AI intersects the circle of radius r′1 at two points. From these two points let A2 be

closest to I. Then r1
r′1

= AA1
AA2

≥ 1 and
r′1
r = AB0

p (here we use that the semiperimeter of the triangle

formed by the lines AB, AC, ` equals AB0 and that this triangle is similar to 4ABC). Applying the same
argument to the circles of raidii r′2 and r

′
3 and adding the obtained inequalities, we get

r1 + r2 + r3 ≥ r′1 + r′2 + r′3 = r

(
AB0

p
+
BC0

p
+
CB0

p

)
= r.

Second solution. Let A0, B0, C0, A1, B1, C1 retain the meaning they had in the �rst solution. We

have ∠B1IC1 = 90◦ + ∠A
2 , ∠A1IC1 = 90◦ + ∠B

2 , ∠A1IB1 = 90◦ + ∠C
2 . Obviously(−−→

IA1 +
−−→
IB1 +

−−→
IC1

)2
≥ 0. (1)

It follows from (1) that

r2 + r2 + r2 + 2r2 cos

(
90◦ +

∠A
2

)
+ 2r2 cos

(
90◦ +

∠B
2

)
+ 2r2 cos

(
90◦ +

∠C
2

)
≥ 0 ⇔

⇔ sin

(
∠A
2

)
+ sin

(
∠B
2

)
+ sin

(
∠C
2

)
≤ 3

2
. (2)
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Let I1 be the centre of the circle of radius r1. Draw the perpendicular I1H from I1 onto IB0. One of the

acute angles in the right triangle II1H is ∠A
2 , the leg opposite this angle is r − r1, and the hypotenuse
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Applying Cauchy-Schwarz inequality we have
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thus, (3) and (4) give 9
2 ≥

18r
3r + r1 + r2 + r3

⇔ r1 + r2 + r3 ≥ r.



�5. On a party with 99 guests, hosts Ann and Bob play a game (the hosts are not regarded as guests).
There are 99 chairs arranged in a circle; initially, all guests hang around those chairs. The hosts take turns
alternately. By a turn, a host orders any standing guest to sit on an unoccupied chair c. If some chair
adjacent to c is already occupied, the same host orders one guest on such chair to stand up (if both chairs
adjacent to c are occupied, the host chooses exactly one of them). All orders are carried out immediately.
Ann makes the �rst move; her goal is to ful�ll, after some move of hers, that at least k chairs are occupied.
Determine the largest k for which Ann can reach the goal, regardless of Bob's play.

Answer. k = 34.

Solution. Preliminary notes. Let F denote the number of occupied chairs at the current position in the
game. Notice that, on any turn, F does not decrease. Thus, we need to determine the maximal value of F
Ann can guarantee after an arbitrary move (either hers or her opponent's).

Say that the situation in the game is stable if every unoccupied chair is adjacent to an occupied one.
In a stable situation, we have F ≥ 33, since at most 3F chairs are either occupied or adjacent to such.
Moreover, the same argument shows that there is a unique (up to rotation) stable situation with F = 33,
in which exactly every third chair is occupied; call such stable situation bad.

If the situation after Bob's move is stable, then Bob can act so as to preserve the current value of F
inde�nitely. Namely, if A puts some guest on chair a, she must free some chair b adjacent to a. Then Bob
merely puts a guest on b and frees a, returning to the same stable position.

On the other hand, if the situation after Bob's move is unstable, then Ann may increase F in her turn
by putting a guest on a chair having no adjacent occupied chairs.

Strategy for Ann, if k ≤ 34. In short, Ann's strategy is to increase F avoiding appearance of a bad situation
after Bob's move (conversely, Ann creates a bad situation in her turn, if she can).

So, on each her turn, Ann takes an arbitrary turn increasing F if there is no danger that Bob reaches
a bad situation in the next turn (thus, Ann always avoids forcing any guest to stand up). The exceptional
cases are listed below.

Case 1. After possible Ann's move (consisting in putting a guest on chair a), we have F = 32, and Bob
can reach a bad situation by putting a guest on some chair. This means that, after Ann's move, every
third chair would be occupied, with one exception. But this means that, by her move, Ann could put a
guest on a chair adjacent to a, avoiding the danger.

Case 2. After possible Ann's move (by putting a guest on chair a), we have F = 33, and Bob can reach
a stable situation by putting a guest on some chair b and freeing an adjacent chair c. If a = c, then Ann
could put her guest on b to create a stable situation after her turn; that enforces Bob to break stability
in his turn. Otherwise, as in the previous case, Ann could put a guest on some chair adjacent to a, still
increasing the value of F , but with no danger of bad situation arising.

So, acting as described, Ann increases the value of F on each turn of hers whenever F ≤ 33. Thus, she
reaches F = 34 after some her turn.

Strategy for Bob, if k ≥ 35. Split all chairs into 33 groups each consisting of three consecutive chairs,
and number the groups by 1, 2, . . . , 33 so that Ann's �rst turn uses a chair from group 1. In short, Bob's
strategy is to ensure, after each his turn, that

(∗) In group 1, at most two chairs are occupied; in every other group, only the central chair
may be occupied.

If (∗) is satis�ed after Bob's turn, then F ≤ 34 < k; thus, property (∗) ensures that Bob will not lose.

It remains to show that Bob can always preserve (∗). after any his turn. Clearly, he can do that oat
the �rst turn.

Suppose �rst that Ann, in her turn, puts a guest on chair a and frees an adjacent chair b, then Bob
may revert her turn by putting a guest on chair b and freeing chair a.



Suppose now that Ann just puts a guest on some chair a, and the chairs adjacent to a are unoccupied.
In particular, group 1 still contains at most two occupied chairs. If the obtained situation satis�es (∗),
then Bob just makes a turn by putting a guest into group 1 (preferably, on its central chair), and, possibly,
removing another guest from that group. Otherwise, a is a non-central chair in some group i ≥ 2; in this
case Bob puts a guest to the central chair in group i and frees chair a.

So Bob indeed can always preserve (∗).



�6. Let P (x) be a nonconstant polynomial of degree n with rational coe�cients which can not be
presented as a product of two nonconstant polynomials with rational coe�cients. Prove that the number
of polynomials Q(x) of degree less than n with rational coe�cients such that P (x) divides P (Q(x))

a) is �nite;
b) does not exceed n.
Solution. It is known that an irreducible polynomial P (x) of degree n with rational coe�cients has n

di�erent complex roots which we denote by α1, α2, . . . , αn.
a) If P (x) divides P (Q(x)), then Q(αk) is also a root of P (x) for each k ≤ n. It follows that the values

of Q at α1, α2, . . . , αn form a sequence αi1 , αi2 , . . . , αin , where all terms are roots of P , not necessarily
di�erent. The number of such sequences is nn, and for each sequence there exists at most one polynomial
Q such that Q(αk) = αik (since two polynomials of degree less than n with equal values at n points must
coincide).

Thus the number of possible polynomials Q(x) does not exceed nn.
b) For each polynomial Q satisfying the condition, Q(α1) equals one of the roots αi. However, there is

at most one polynomial Q of degree less than n with rational coe�cients such that Q(α1) = αi, Indeed, if
Q1(α1) = Q2(α1) = αi, then α1 is a root of the polynomial Q1 −Q2 with rational coe�cients and degree
less than n. If this polynomial is not identically zero, its greatest common divisor with P is a nonconstant
divisor of P with rational coe�cients and degree less than n, a contradiction.

Thus the number of possible polynomials Q(x) does not exceed n.


