
XVI International Zhautykov Olympiad/Theoretical Competition Page 1/13 

SOLUTIONS TO THE PROBLEMS OF THE THEORETICAL 
COMPETITION 

Attention. Points in grading are not divided! 
Problem 1 (10.0 points) 
Problem 1.1 (4.0 points) 

The oscillation period of a mathematical pendulum is determined by the formula  

𝑇𝑇 = 2𝜋𝜋�𝑙𝑙
𝑔𝑔
,          (1) 

where 𝑔𝑔 stands for the acceleration of gravity at a given time of day. 
The difference in the periods of oscillation of the pendulum at midday and midnight is due to 

the influence of the Sun: gravitational attraction and centrifugal force due to the Earth’s motion 
around the Sun. Using formula (1) for the period of pendulum oscillation the relative change in the 
periods can be represented as 

𝜀𝜀 = 𝑇𝑇2−𝑇𝑇1
𝑇𝑇1

= �
𝑔𝑔1
𝑔𝑔2
− 1,         (2) 

where 𝑔𝑔1,𝑔𝑔2 denotes the acceleration of gravity at midday and midnight, respectively.   
The directions of the Earth's rotation around its own axis and around the Sun coincide, as 

shown in Figure 1. The directions of action of gravitational and centrifugal forces are different at 
midday and midnight, as shown in Figure 2. 

  
In Figure 2: 𝑚𝑚𝑔𝑔0 is the force of gravitational attraction to the Earth; 𝐹𝐹1 is the centrifugal force 

due to the rotation of the Earth around its own axis; 𝐹𝐹2 is the force of gravitational attraction to the 
Sun; 𝐹𝐹3 is the centrifugal force due to the motion of the Earth around the Sun. 

Then the acceleration of gravity, taking into account the influence of the Sun, are determined 
by the expressions: 
At midday: 

𝑔𝑔1 = 𝑔𝑔0 − 𝜔𝜔1
2𝑟𝑟1 − 𝐺𝐺 𝑀𝑀

(𝑟𝑟2−𝑟𝑟1)2 + 𝜔𝜔2
2𝑟𝑟2.      (3) 

At midnight: 
𝑔𝑔2 = 𝑔𝑔0 − 𝜔𝜔1

2𝑟𝑟1 + 𝐺𝐺 𝑀𝑀
(𝑟𝑟2+𝑟𝑟1)2 − 𝜔𝜔2

2𝑟𝑟2.      (4) 
In the above formulas M  designates the mass of the Sun and G  signifies the gravitational constant. 

To simplify the obtained expressions, we use the equation describing the motion of the Earth 
around the Sun in the following form 

𝐺𝐺 𝑀𝑀
𝑟𝑟22

= 𝜔𝜔2
2𝑟𝑟2.          (5) 

Given this relation, the acceleration difference is represented as 

∆𝑔𝑔 = 𝑔𝑔1 − 𝑔𝑔2 = 𝜔𝜔2
2𝑟𝑟2 �2 − �1 − 𝑟𝑟1

𝑟𝑟2
�
−2
− �1 + 𝑟𝑟1

𝑟𝑟2
�
−2
�.    (6) 

Note that in this case, in order to obtain a nonzero result in the power series expansions, it is 
necessary to keep the second order terms, i.e. ( ) 22 3211 xxx +−≈+ − , such that: 
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∆𝑔𝑔 = −6𝜔𝜔2
2𝑟𝑟2 �

𝑟𝑟1
𝑟𝑟2
�
2
.         (7) 

Thus, the relative change in the periods of oscillations due to the influence of the Sun is equal 
𝜀𝜀 ≈ ∆𝑔𝑔

2𝑔𝑔2
≈ ∆𝑔𝑔

2𝑔𝑔0
,          (8) 

so that the final relation is derived as 

𝜀𝜀 = −3 𝜔𝜔2
2𝑟𝑟2
𝑔𝑔0

�𝑟𝑟1
𝑟𝑟2
�
2
≈ −3,3 ∙ 10−12.       (9) 

 
Content Points 

Formula (1): 𝑇𝑇 = 2𝜋𝜋�𝑙𝑙
𝑔𝑔
                   0,2 

Formula (2): 𝜀𝜀 = 𝑇𝑇2−𝑇𝑇1
𝑇𝑇1

= �
𝑔𝑔1
𝑔𝑔2
− 1                   0,2 

Earth’s gravity is accounted for 0,2 
Sun's gravity is accounted for 0,2 
Centrifugal force due to the Earth motion around the Sun is accounted for 0,2 
Centrifugal force due th the Earth rotation is accounted for 0,2 
Formula (3): 𝑔𝑔1 = 𝑔𝑔0 − 𝜔𝜔1

2𝑟𝑟1 − 𝐺𝐺 𝑀𝑀
(𝑟𝑟2−𝑟𝑟1)2 + 𝜔𝜔2

2𝑟𝑟2          0,4 

Formula (4): 𝑔𝑔2 = 𝑔𝑔0 − 𝜔𝜔1
2𝑟𝑟1 + 𝐺𝐺 𝑀𝑀

(𝑟𝑟2+𝑟𝑟1)2 − 𝜔𝜔2
2𝑟𝑟2          0,4 

Formula (5): 𝐺𝐺 𝑀𝑀
𝑟𝑟22

= 𝜔𝜔2
2𝑟𝑟2          0,3 

Formula (6): ∆𝑔𝑔 = 𝑔𝑔1 − 𝑔𝑔2 = 𝜔𝜔2
2𝑟𝑟2 �2 − �1 − 𝑟𝑟1

𝑟𝑟2
�
−2
− �1 + 𝑟𝑟1

𝑟𝑟2
�
−2
�          0,3 

Formula (7): ∆𝑔𝑔 = −6𝜔𝜔2
2𝑟𝑟2 �

𝑟𝑟1
𝑟𝑟2
�
2
          0,4 

Formula (8): 𝜀𝜀 ≈ ∆𝑔𝑔
2𝑔𝑔2

≈ ∆𝑔𝑔
2𝑔𝑔0

         0,3 

Formula (9): 𝜀𝜀 = −3 𝜔𝜔2
2𝑟𝑟2
𝑔𝑔0

�𝑟𝑟1
𝑟𝑟2
�
2
          0,3 

Numerical value in formula (9): 𝜀𝜀 ≈ −3,3 ∙ 10−12 0,4 
Total 4,0 

 
Problem 1.2 (3.0 points) 

Consider a conductor with a resistivity 𝜌𝜌, length 𝑙𝑙 and a cross section area 𝑆𝑆 in which the 
current 𝐼𝐼 flows. According to the Joule-Lenz law, the heat power dissipated in a conductor per unit of 
time is equal to 

𝑊𝑊 = 𝐼𝐼2𝑅𝑅,          (1) 
where the current density is defined as 

𝑗𝑗 = 𝐼𝐼
𝑆𝑆
,           (2) 

and the resistance is found by the formula 
𝑅𝑅 = 𝜌𝜌 𝑙𝑙

𝑆𝑆
.          (3) 

It follows from formulas (1)-(3) that the heat power per unit volume is determined by the 
expression 

𝑤𝑤 = 𝑊𝑊
𝑆𝑆𝑆𝑆

= 𝜌𝜌𝑗𝑗2.          (4) 
On the other hand, Ohm's law is written as 

𝑈𝑈 = 𝐼𝐼𝐼𝐼,          (5) 
in which the voltage across the conductor is expressed in terms of the field strength 𝐸𝐸 in the form 

𝑈𝑈 = 𝐸𝐸𝐸𝐸.          (6) 
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Hence, equation (5), taking into account (2), (3) and (6), is written in the following 
differential form 

𝑗𝑗 = 1
𝜌𝜌
𝐸𝐸,          (7) 

Thus, according to the Joule-Lenz law, the heat power dissipated per unit of volume of the 
substance is 

𝑤𝑤 = 𝜌𝜌(𝑟𝑟)𝑗𝑗(𝑟𝑟)2,         (8) 
where the current density is determined by the expression 

𝑗𝑗(𝑟𝑟) = 𝐼𝐼
4𝜋𝜋𝑟𝑟2

,          (9) 
with 𝜌𝜌(𝑟𝑟) denotes the dependence of the resistivity on the distance 𝑟𝑟 to the common center of 
spheres. 

On the other hand, Ohm's law (7) is written in the differential form as 
𝑗𝑗(𝑟𝑟) = 1

𝜌𝜌(𝑟𝑟)𝐸𝐸(𝑟𝑟),         (10) 
where 𝐸𝐸(𝑟𝑟) stands for the electric field strength in the substance. 

It follows from relations (8)-(10) that the electric field strength has the form 
𝐸𝐸(𝑟𝑟) = 𝑤𝑤

𝑗𝑗(𝑟𝑟)
= 4𝜋𝜋𝜋𝜋

𝐼𝐼
𝑟𝑟2.         (11) 

To determine the charge inside the conducting substance, we use the Gauss theorem for the 
closed volume, which is practically enclosed between spheres of radii 𝑎𝑎 and 𝑏𝑏 

𝐸𝐸(𝑏𝑏)4𝜋𝜋𝑏𝑏2 − 𝐸𝐸(𝑎𝑎)4𝜋𝜋𝑎𝑎2 = 𝑄𝑄
𝜀𝜀0

.       (12) 
where 𝑄𝑄 symbolizes the total charge inside the conductive substance. 

Since the volume of the substance enclosed between the two spheres is equal to 
𝑉𝑉 = 4

3
𝜋𝜋𝑏𝑏3 − 4

3
𝜋𝜋𝑎𝑎3,         (13) 

Then, the average charge density in the conducting substance is obtained as 
𝜌𝜌𝑄𝑄 = 𝑄𝑄

𝑉𝑉
= 12𝜋𝜋𝜀𝜀0𝑤𝑤

𝐼𝐼
�𝑏𝑏

4−𝑎𝑎4

𝑏𝑏3−𝑎𝑎3
�.        (14) 

 
Content Points 

Formula (1): 𝑊𝑊 = 𝐼𝐼2𝑅𝑅          0,2 
Formula (2): 𝑗𝑗 = 𝐼𝐼

𝑆𝑆
           0,2 

Formula (3): 𝑅𝑅 = 𝜌𝜌 𝑙𝑙
𝑆𝑆
          0,2 

Formula (4): 𝑤𝑤 = 𝑊𝑊
𝑆𝑆𝑆𝑆

= 𝜌𝜌𝑗𝑗2          0,2 
Formula (5): 𝑈𝑈 = 𝐼𝐼𝐼𝐼          0,2 
Formula (6): 𝑈𝑈 = 𝐸𝐸𝐸𝐸          0,2 
Formula (7): 𝑗𝑗 = 1

𝜌𝜌
𝐸𝐸          0,2 

Formula (8): 𝑤𝑤 = 𝜌𝜌(𝑟𝑟)𝑗𝑗(𝑟𝑟)2         0,2 
Formula (9): 𝑗𝑗(𝑟𝑟) = 𝐼𝐼

4𝜋𝜋𝑟𝑟2
          0,2 

Formula (10): 𝑗𝑗(𝑟𝑟) = 1
𝜌𝜌(𝑟𝑟)𝐸𝐸(𝑟𝑟)         0,2 

Formula (11): 𝐸𝐸(𝑟𝑟) = 𝑤𝑤
𝑗𝑗(𝑟𝑟)

= 4𝜋𝜋𝜋𝜋
𝐼𝐼
𝑟𝑟2         0,2 

Formula (12): 𝐸𝐸(𝑏𝑏)4𝜋𝜋𝑏𝑏2 − 𝐸𝐸(𝑎𝑎)4𝜋𝜋𝑎𝑎2 = 𝑄𝑄
𝜀𝜀0

      0,3 

Formula (13): 𝑉𝑉 = 4
3
𝜋𝜋𝑏𝑏3 − 4

3
𝜋𝜋𝑎𝑎3         0,2 

Formula (14): 𝜌𝜌𝑄𝑄 = 12𝜋𝜋𝜀𝜀0𝑤𝑤
𝐼𝐼

�𝑏𝑏
4−𝑎𝑎4

𝑏𝑏3−𝑎𝑎3
�        0,3 

Total 3,0 
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Problem 1.3 (3.0 points) 
To analyze the image on the screen, it is more convenient to build first the image 𝐿𝐿′ of the 

source in the mirror. This image is located at the distance 𝑙𝑙 from the mirror and has the same 
dimensions as the real source. 

 
1.3.1 In this case, the source size is much smaller than 
the size of the mirror. As a first approximation, the 
source can be considered point-like. Therefore, the 
illuminated area on the screen has the form of a regular 
triangle repeating the shape of the mirror (see. fig.). 

It follows from simple geometric constructions 
that the size of the triangle is 3 times the size of the 
mirror, i.e. a triangle on the screen can be inscribed in a 
circle of radius 𝑟𝑟 = 3𝑟𝑟2 = 30 𝑚𝑚𝑚𝑚. 

 
 

 
Since the source has, albeit small, but finite dimensions, the image of the triangle is to be 

slightly blurry, i.e. bordered by a semi-illuminated strip (border). The width of this strip is 
approximately equal to ∆𝑟𝑟 ≈ 3𝑟𝑟1 = 3 𝑚𝑚𝑚𝑚. It can be imagined that each source point gives an image 
in the form of a triangle, these images are displaced relative to each other by the twice displacement 
of the source points.  

In the center of the triangle there should be a blurred shadow from the source (shadow and 
semi shadow) whose radius is 𝑟𝑟𝑆𝑆 ≈ 2𝑟𝑟1 = 2 𝑚𝑚𝑚𝑚. 
1.3.2 In this case, the size of the source is much larger than 
the size of the mirror, which in the first approximation can 
be considered as a very small “point” hole that forms an 
inverted image of the source. Such an effect is used in a 
pinhole camera, which also forms an inverted image. 

It follows from geometric constructions that a star 
can be inscribed in a circle of radius 𝑟𝑟 = 2𝑟𝑟1 = 20 𝑚𝑚𝑚𝑚. 
The final dimensions of the source lead to slight blurring 
of the image with the width of the semi-illuminated strip 
(border) approximately equal to ∆𝑟𝑟 = 2𝑟𝑟2 = 0.2 𝑚𝑚𝑚𝑚. 
Further, it should be noted that the real source creates a shadow on the screen in the form of the same 
five-pointed star and of the same size! However, this shadow is not inverted. Therefore, only part of 
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the bright star is closed, as shown in the figure. Thus, only five irregular quadrangles remain 
illuminated on the screen. 

 
 Content Points 

1.3.1 

The rays are correctly constructed (the image of the source, or the correct 
reflection of the rays); 0.3 

1.3 

Image grading: 
the main part is an inverted triangle; (if not, then the rest in this paragraph 
is not counted); 
Triangle size - numerical value (side or radius); 
There is a semi-illuminated border; 
Border width; 
There is a blurred shadow in the center; 
The size of the shadow (partial shade) is the radius in the range of 1-2 mm;  

 
0,3 

 
0,1 
0,2 
0,1 
0,2 
0,1 

1.3.2 

The rays are correctly constructed (the image of the source, or the correct 
reflection of the rays); 0,2 

1.7 

Image grading 
The main part is an inverted star; (if not, then the rest in this paragraph is 
not counted); 
The radius of the star (numerical value); 
There is a border; 
Estimation of the border thickness; 
There is a shadow from the source; 
Shadow is not an inverted star; 
The size of the shadow coincides with the size of the inverted star; 
Illuminated areas - 5 quadrangles; 

 
 

0,4 
0,2 
0,1 
0,2 
0,2 
0,1 
0,2 
0,1 

 Total  3,0 
 

Problem 2. Phase states and phase transitions (10,0 points) 
Specific heat of phase transition 

2.1 The work of steam against constant external pressure during evaporation of a unit water mass is 
found as 

𝐴𝐴 = 𝑃𝑃(𝑣𝑣2 −  𝑣𝑣1).         (1) 
Since 𝑣𝑣2 ≫ 𝑣𝑣1, we can neglect the specific volume of liquid 𝑣𝑣1 in comparison with the 

specific volume of vapor 𝑣𝑣2. Then, considering water vapor as an ideal gas with the equation of state 
𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑅𝑅

𝜇𝜇𝑤𝑤
          (2) 

the work sought is obtained as 
𝐴𝐴 = 𝑃𝑃(𝑣𝑣2 −  𝑣𝑣1)  ≈ 𝑅𝑅𝑇𝑇𝑏𝑏

𝜇𝜇𝑤𝑤
.        (3) 



XVI International Zhautykov Olympiad/Theoretical Competition Page 6/13 

Thus, the ratio of work to the total heat of evaporation at 𝑇𝑇 = 373 К is determined by the 
expression 

𝐴𝐴
𝑟𝑟в

 = 𝑅𝑅𝑇𝑇𝑏𝑏
𝜇𝜇𝑤𝑤𝑟𝑟𝑤𝑤

,          (4) 
and the rest of the heat goes to the increase of the internal energy of the system ∆𝑢𝑢 =  𝑟𝑟𝑤𝑤 −  𝐴𝐴, i.e. 

∆𝑢𝑢
𝑟𝑟𝑤𝑤

= 1 −  𝑅𝑅𝑇𝑇𝑏𝑏
𝜇𝜇𝑤𝑤𝑟𝑟𝑤𝑤

=  92,4 %.        (5) 
2.2 The evaporation of one mole of water at a temperature 𝑇𝑇 consumes heat 

𝜇𝜇𝑤𝑤𝑟𝑟(𝑇𝑇)  =  𝑈𝑈2(𝑇𝑇) – 𝑈𝑈1(𝑇𝑇)  +  𝑃𝑃𝑉𝑉2 = 𝑈𝑈2(𝑇𝑇) – 𝑈𝑈1(𝑇𝑇)  +  𝑅𝑅𝑅𝑅.   (6) 
A similar expression for the temperature 𝑇𝑇𝑏𝑏 = 373 К has the form 

𝜇𝜇𝑤𝑤𝑟𝑟𝑤𝑤  =  𝑈𝑈2(𝑇𝑇𝑏𝑏) – 𝑈𝑈1(𝑇𝑇𝑏𝑏)  +  𝑅𝑅𝑇𝑇𝑏𝑏 .       (7) 
Subtracting equation (7) from equation (6), we obtain for the change in the molar heat of 

evaporation 
𝜇𝜇𝑤𝑤∆𝑟𝑟 =  ∆𝑈𝑈2 – ∆𝑈𝑈1  +  𝑅𝑅∆𝑇𝑇 = С𝑃𝑃∆𝑇𝑇 −  𝜇𝜇𝑤𝑤𝑐𝑐𝑤𝑤∆𝑇𝑇 =  𝜇𝜇𝑤𝑤 �

С𝑃𝑃
𝜇𝜇𝑤𝑤
−  𝑐𝑐𝑤𝑤�∆𝑇𝑇,  (8) 

where ∆𝑇𝑇 = 𝑇𝑇 −  𝑇𝑇𝑏𝑏 and ∆𝑟𝑟 = 𝑟𝑟(𝑇𝑇) − 𝑟𝑟𝑤𝑤. 
Given that for water vapor, the molar heat capacity at constant pressure is 

𝐶𝐶𝑃𝑃 = 4𝑅𝑅,          (9) 
we obtain the specific heat of water evaporation 

𝑟𝑟(𝑇𝑇) =  𝑟𝑟𝑤𝑤 −  �𝑐𝑐𝑤𝑤 −
4𝑅𝑅
𝜇𝜇𝑤𝑤
� (𝑇𝑇 −  𝑇𝑇𝑏𝑏) =  2447 𝐽𝐽/𝑔𝑔.     (10) 

It is interesting to note that the heat of evaporation is increased by ∆𝑟𝑟/𝑟𝑟𝑤𝑤 ≈ 8 %. 
The Clausius–Clapeyron relation 

2.3 Neglecting the specific volume of water compared to the volume of vapor, we apply the 
Clapeyron-Clausius equation to the vaporization in the form 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟
𝑇𝑇𝑇𝑇

=  𝜇𝜇𝑤𝑤𝑟𝑟𝑤𝑤
𝑅𝑅𝑇𝑇2

𝑃𝑃         (11) 
or 

𝑑𝑑𝑑𝑑
𝑃𝑃

= 𝜇𝜇𝑤𝑤𝑟𝑟𝑤𝑤𝑑𝑑𝑑𝑑
𝑅𝑅𝑇𝑇2

.          (12) 
Integrating this expression at 𝑟𝑟 =  𝑟𝑟𝑤𝑤 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 gives rise to 

𝑃𝑃 =  𝑃𝑃0 exp�𝜇𝜇𝑤𝑤𝑟𝑟𝑤𝑤
𝑅𝑅

� 1
𝑇𝑇𝑏𝑏

– 1
𝑇𝑇
��.        (13) 

2.4 As it follows from equation (13) the explicit dependence of the boiling point of water on external 
pressure has the form 

𝑇𝑇 =  𝑇𝑇𝑏𝑏
1−

𝑅𝑅𝑇𝑇𝑏𝑏
𝜇𝜇𝑤𝑤𝑟𝑟𝑤𝑤

ln 𝑃𝑃
𝑃𝑃0

 .         (14) 

According to the barometric formula for an isothermal atmosphere, we have 
𝑃𝑃 = 𝑃𝑃0 exp �− 𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔ℎ

𝑅𝑅𝑇𝑇0
�.        (15) 

Substituting this expression into formula (14), we obtain the dependence of the boiling 
temperature on height and the numerical value of the boiling temperature of water at the altitude of 
ℎ =  7 𝑘𝑘𝑘𝑘 

𝑇𝑇 =  𝑇𝑇𝑏𝑏
1+

𝑇𝑇𝑏𝑏
𝑇𝑇0

𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎
𝜇𝜇𝑤𝑤

𝑔𝑔ℎ
𝑟𝑟𝑤𝑤

= 349,6 К = 76,6 ℃.      (16) 

2.5 It follows from the Clapeyron-Clausius relation the following holds at the vicinity of 0 ℃  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝑟𝑟𝑤𝑤
𝑇𝑇0�

1
𝜌𝜌𝑤𝑤

− 1𝜌𝜌𝑖𝑖
�
.         (17) 

Therefore, we obtain that in order to lower the melting temperature of ice by 10С, the pressure 
should be increased by 

∆𝑃𝑃 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∆𝑇𝑇 = 139 𝑎𝑎𝑎𝑎𝑎𝑎,        (18) 

so that the pressure should be equal to 𝑃𝑃 = 140 𝑎𝑎𝑎𝑎𝑎𝑎. 
2.6 In order for ice crystals to break when walking, and not to melt under the influence of pressure 
𝑃𝑃𝑐𝑐𝑐𝑐, the outdoor temperature should be lower than 
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𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 =  𝑃𝑃𝑐𝑐𝑐𝑐
(𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑)

≈ −7,21 ℃ ,        (19) 
in which the derivative (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) is determined by formula (17). 
2.7 Since for one mole of vapor PV = RT, then 

𝑑𝑑(𝑃𝑃𝑃𝑃)  =  𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑉𝑉𝑉𝑉𝑉𝑉 =  𝑅𝑅𝑅𝑅𝑅𝑅,       (20) 
thus, the elementary work of the vapor when changing its volume is derived as 

𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑅𝑅𝑅𝑅𝑅𝑅 –  𝑉𝑉𝑉𝑉𝑉𝑉.         (21) 
From the first law of thermodynamics it follows that the heat supplied to the vapor has the 

form 
𝛿𝛿𝛿𝛿 =  𝑑𝑑𝑑𝑑 +  𝛿𝛿𝛿𝛿 =  𝐶𝐶𝑉𝑉𝑑𝑑𝑑𝑑 +  𝑅𝑅𝑅𝑅𝑅𝑅 −  𝑉𝑉𝑉𝑉𝑉𝑉  =  𝐶𝐶𝑃𝑃𝑑𝑑𝑑𝑑 −  𝑉𝑉𝑉𝑉𝑉𝑉 .   (22) 

Given that from the Clapeyron-Clausius relation 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 =  𝑟𝑟𝑤𝑤𝜇𝜇𝑤𝑤/(𝑇𝑇𝑏𝑏𝑉𝑉),, we obtain the heat 
capacity of the vapor 

𝐶𝐶 = 𝛿𝛿𝛿𝛿
𝑑𝑑𝑑𝑑

=  𝐶𝐶𝑃𝑃 – 𝑉𝑉𝑉𝑉𝑉𝑉
𝑑𝑑𝑑𝑑

=  𝐶𝐶𝑃𝑃 – 𝜇𝜇𝑤𝑤𝑟𝑟𝑤𝑤
𝑇𝑇𝑏𝑏

 =  − 75,7 𝐽𝐽/(𝐾𝐾 ∙ 𝑚𝑚𝑚𝑚𝑚𝑚).   (23) 
Thus, the heat from the vapor must be removed so that it does not overheat as a result of 

expansion. It is interesting to note that the specific heat in this process turned out to be almost equal 
to the specific heat of water with a minus sign 𝑐𝑐 =  𝐶𝐶𝑃𝑃/𝜇𝜇𝑤𝑤 –  𝑟𝑟𝑤𝑤/𝑇𝑇𝑏𝑏  =  − 4,21 𝐽𝐽/(𝑔𝑔 ∙ 𝐾𝐾). 

Border boiling 
2.8 A liquid boils when bubbles are formed inside such that the pressure of its saturated vapor 
reaches the atmospheric pressure P0. At the liquids border, the total vapor pressure in the bubbles 
formed upon boiling is the sum of the partial pressures of the saturated vapor of carbon tetrachloride 
and water at t* 

𝑃𝑃0  =  𝑃𝑃(𝑡𝑡∗) + 𝑃𝑃𝑤𝑤(𝑡𝑡∗).        (24) 
It follows that the saturated vapor pressure of carbon tetrachloride at a boiling point is found 

as 
𝑃𝑃∗  =  𝑃𝑃(𝑡𝑡∗) =  𝑃𝑃0  −  𝑃𝑃𝑤𝑤(𝑡𝑡∗).       (25) 

From the Clapeyron-Clausius relation for carbon tetrachloride it follows that 
𝑑𝑑𝑑𝑑
𝑃𝑃

= 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇
𝑅𝑅𝑇𝑇2

.          (26) 
After integrating from the lower bound 𝑇𝑇 =   𝑡𝑡 +  273,15 =  349,8 𝐾𝐾 to the higher bound 

𝑇𝑇∗ =  𝑡𝑡∗  +  273,15 =  339,15 𝐾𝐾 results in the following formula 
𝑙𝑙𝑙𝑙(𝑃𝑃0/𝑃𝑃∗)  =   𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝑅𝑅𝑅𝑅𝑇𝑇∗,        (27) 

which means the heat of vaporization of carbon tetrachloride is obtained as 
𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑇𝑇∗ ln(𝑃𝑃0/𝑃𝑃∗)

𝜇𝜇(𝑇𝑇−𝑇𝑇∗ )
 ≈  180 J/g.       (28) 

For reference: the experimental value is 𝑟𝑟 = 195 𝐽𝐽/𝑔𝑔. 
2.9 The ratio of evaporation rates from the border layer is obviously equal to the ratio of the masses 
of vapor of tetrachlomethane and water in the bubbles formed during boiling, which, in turn, is equal 
to the ratio of the densities of the vapors found as 

𝑚𝑚
𝑚𝑚𝑤𝑤

= 𝜌𝜌
𝜌𝜌𝑤𝑤

 = 𝑃𝑃∗𝜇𝜇
𝑃𝑃𝑤𝑤(𝑡𝑡∗)𝜇𝜇𝑤𝑤

≈ 25.        (29) 
Thus, carbon tetrachloride evaporates 25 times faster (by weight) than water. This means that 

by the time of evaporation of carbon tetrachloride, the amount of water that finally evaporates is 
written as 

𝛥𝛥𝛥𝛥 = 𝜌𝜌𝜌𝜌
2
𝑚𝑚𝑤𝑤
𝑚𝑚

=  3,25 𝑔𝑔 .        (30) 
Accordingly, the amount of water remaining after evaporation of all carbon tetrachloride is 

derived as 
𝑀𝑀𝑤𝑤  =  𝜌𝜌𝑤𝑤𝑉𝑉/2 –  𝛥𝛥𝛥𝛥 =  46,7 𝑔𝑔.       (31) 

2.10 Let border boiling occur at a certain temperature 𝑡𝑡𝑥𝑥, then the saturated vapor pressure of 
fluoroketone 𝑃𝑃 and the saturated vapor pressure of water 𝑃𝑃𝑤𝑤 at this temperature should equal the 
external atmospheric pressure, i.e. 

𝑃𝑃0  =  𝑃𝑃(𝑡𝑡𝑥𝑥)  +  𝑃𝑃𝑤𝑤(𝑡𝑡𝑥𝑥).        (32) 
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Thus, the saturated vapor pressure of fluoroketone at the border boiling point decreases by the 
value of the saturated vapor pressure of water at this temperature 

𝑃𝑃(𝑡𝑡𝑥𝑥)  = 𝑃𝑃0 − 𝑃𝑃𝑤𝑤(𝑡𝑡𝑥𝑥).        (33) 
 
From the Clapeyron – Clausius equation (in the approximation of small liquid volume and 

vapor ideality) it follows that the slope of the phase equilibrium line P(T) at the volume boiling point 
of fluoroketone reads as 

α𝑓𝑓  =  d𝑃𝑃
d𝑇𝑇

 =  𝑟𝑟𝑟𝑟𝑃𝑃0
𝑅𝑅𝑇𝑇𝑓𝑓

2 .         (34) 

For water at the same temperature, a similar derivative is more than 6 times less 
αw  =  d𝑃𝑃

d𝑇𝑇
 =  𝜇𝜇𝑤𝑤𝑟𝑟𝑤𝑤𝑃𝑃w(𝑡𝑡𝑓𝑓)

𝑅𝑅𝑇𝑇𝑓𝑓
2 .        (35) 

Since α𝑓𝑓/αw ≈ 6,30, the decrease in pressure and, correspondingly, in the boiling point are 
both small relative to the same values for fluoroketone, therefore, we can use the linear 
approximation near tf 

𝑃𝑃0  −  𝑃𝑃(𝑡𝑡𝑥𝑥) =  α𝑓𝑓Δ𝑇𝑇 = 𝑃𝑃w(𝑡𝑡𝑥𝑥) =  𝑃𝑃w�𝑡𝑡𝑓𝑓�– αwΔ𝑇𝑇,    (36) 
where Δ𝑇𝑇 = 𝑇𝑇𝑓𝑓 − 𝑇𝑇𝑥𝑥, wherefrom the lowering of the boiling point is found as 

Δ𝑇𝑇 = 𝑃𝑃w(t𝑓𝑓)
(α𝑓𝑓 + αw)

 .         (37) 

Finally, the temperature for the border boiling is obtained as 
𝑡𝑡𝑥𝑥  =  𝑡𝑡𝑓𝑓 –  Δ𝑇𝑇 =  46,3 ℃P.        (38) 

For reference: the experimental value is 𝑡𝑡𝑥𝑥  =  (46 ± 1) ℃. 
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Problem 3. Ring in a magnetic field (10.0 points) 
Uniformly charged ring 

3.1 Under the action of gravity, the center of mass of the ring acquires a velocity 𝑣𝑣 directed vertically 
downward. In this case, the Lorentz force 𝐹𝐹𝐿𝐿1 arises, leading to the rotation of the ring around its own 
axis with an angular velocity 𝜔𝜔, which in turn leads to the appearance of the vertical component of 
the Lorentz force 𝐹𝐹𝐿𝐿2 directed against gravity, regardless of the sign of the ring charge. 

The equation of motion of the ring center of mass has the form 
𝑚𝑚𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑚𝑚𝑚𝑚 − 𝐹𝐹𝐿𝐿2,         (1) 

where the Lorentz force is written as 
𝐹𝐹𝐿𝐿1 = 𝑞𝑞𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟𝐵𝐵,          (2) 

and the linear speed of ring rotation 
𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟 = 𝜔𝜔𝜔𝜔.          (3) 

Thus, the equation of motion of the ring center of mass is finally derived as 
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𝑚𝑚𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑚𝑚𝑚𝑚 − 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞.         (4) 
The equation of rotational motion of the ring is written as 

𝐼𝐼 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑀𝑀𝐿𝐿1,          (5) 
where the torque of the Lorentz force moment 𝐹𝐹𝐿𝐿1 is determined by the expression 

𝑀𝑀𝐿𝐿1 = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞,          (6) 
and the moment of inertia of the ring is equal to 

𝐼𝐼 = 𝑚𝑚𝑟𝑟2.          (7) 
Let ℎ be the vertical displacement of the ring center of mass, then its speed is 

𝑣𝑣 = 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

.          (8) 
Putting together (5), (6) and (8) and integrating over time, taking into account the initial 

condition 𝜔𝜔 = 0 at ℎ = 0, we obtain the relation 
𝐼𝐼𝐼𝐼 = 𝑞𝑞𝑞𝑞𝑞𝑞ℎ.          (9) 

At the moment when the speed of the ring center of mass is maximum, the total force on the 
right side of equation (4) vanishes, which leads to the expression 

𝑚𝑚𝑚𝑚 = 𝑞𝑞𝑞𝑞𝑞𝑞𝜔𝜔0.         (10) 
Using relation (9) for this particular moment in time 
  𝐼𝐼𝜔𝜔0 = 𝑞𝑞𝑞𝑞𝑞𝑞ℎ0,          (11) 

we apply the law of energy conservation in the following form 
𝑚𝑚𝑚𝑚ℎ0 = 𝑚𝑚𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

2

2
+ 𝐼𝐼𝜔𝜔0

2

2
.        (12) 

Solving equations (10)-(12) together with the expression for the moment of inertia (7), we 
find the maximum velocity of the ring center of mass in the following form 

𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚
𝑞𝑞𝑞𝑞

.          (13) 
3.2 Substituting relation (9) into the equation (4) of motion of the ring center of mass and using (8), 
we obtain the equation of harmonic oscillations 

𝑚𝑚𝑑𝑑2ℎ
𝑑𝑑𝑡𝑡2

= 𝑚𝑚𝑚𝑚 − (𝑞𝑞𝑞𝑞)2

𝑚𝑚
ℎ        (14) 

with the frequency 
𝜔𝜔𝐿𝐿 = 𝑞𝑞𝑞𝑞

𝑚𝑚
.          (15) 

The time sought is quarter of the period of oscillation, i.e. 
  ∆𝑡𝑡 = 𝜋𝜋

2𝜔𝜔𝐿𝐿
= 𝜋𝜋𝜋𝜋

2𝑞𝑞𝑞𝑞
.         (16) 

3.3 The initial velocity of the ring center of mass is zero and reaches its maximum at the moment of 
passage of the equilibrium position, therefore, the maximum height ℎ𝑚𝑚𝑚𝑚𝑚𝑚 by which the ring center of 
mass descends is obtained as 

ℎ𝑚𝑚𝑚𝑚𝑚𝑚 = 2ℎ0 = 2𝑔𝑔𝑚𝑚2

𝑞𝑞2𝐵𝐵2
.         (17) 

Conductive ring 
3.4 Under the action of gravity, the ring center of mass acquires a velocity 𝑣𝑣 directed vertically 
downward. In this case, an induction current 𝐼𝐼 arises in the ring as a result of the action of a magnetic 
field, which leads to the appearance of a vertical Lorentz force 𝐹𝐹𝐿𝐿 directed against gravity. 

The equation of motion of the ring center of mass has the form 
𝑚𝑚𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑚𝑚𝑚𝑚 − 𝐹𝐹𝐿𝐿,         (18) 

and the Lorentz force is determined by the expression 
𝐹𝐹𝐿𝐿 = 𝐵𝐵𝐵𝐵𝐵𝐵,          (19) 

with the ring length 
𝐿𝐿 = 2𝜋𝜋𝜋𝜋.          (20) 

When moving in a magnetic field, the following electromotive force arises in the ring 
ℇ = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐵𝐵𝐵𝐵𝐵𝐵,         (21) 

which, according to Ohm's law, leads to the appearance of the induction current of strength 
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ℇ = 𝐼𝐼𝐼𝐼,          (22) 
where the ring resistance is 

𝑅𝑅 = 𝜌𝜌 𝐿𝐿
𝑠𝑠
.          (23) 

In the steady-state fall mode of the ring center, its velocity 𝑣𝑣 = 𝑣𝑣0 remains unchanged, then 
from (18)-(23) we obtain 

𝑣𝑣0 = 𝑚𝑚𝑚𝑚𝑚𝑚
2𝜋𝜋𝜋𝜋𝜋𝜋𝐵𝐵2

.          (24) 
3.5 Expressing the velocity from (21), (22) and substituting it into equation (18), as well as using 
(19), we obtain the differential equation 

𝑚𝑚𝑚𝑚
𝐵𝐵𝐵𝐵

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑚𝑚𝑚𝑚 − 𝐵𝐵𝐵𝐵𝐵𝐵,         (25) 
with the initial condition 

𝐼𝐼(0) = 0.          (26) 
The solution to equation (25) when (26) is satisfied is the function 

𝐼𝐼(𝑡𝑡) = 𝑚𝑚𝑚𝑚
2𝜋𝜋𝜋𝜋𝜋𝜋

�1 − exp �− 2𝜋𝜋𝜋𝜋𝜋𝜋𝐵𝐵2

𝑚𝑚𝑚𝑚
𝑡𝑡��.       (27) 

Whence, 
𝐴𝐴1 = 𝑚𝑚𝑚𝑚

2𝜋𝜋𝜋𝜋𝜋𝜋
,          (28) 

𝐵𝐵1 = − 𝑚𝑚𝑚𝑚
2𝜋𝜋𝜋𝜋𝜋𝜋

,          (29) 

𝛾𝛾1 = −2𝜋𝜋𝜋𝜋𝜋𝜋𝐵𝐵2

𝑚𝑚𝑚𝑚
.          (30) 

Conductive ring with a cut 
3.6 The equation of motion of the ring center of mass of the is still described by equations (18)-(20), 
and an electromotive force (21) is also generated in the ring. However, in this case, charges of the 
opposite sign accumulate at the cut edges; therefore, instead of Ohm's law (22), we have 

ℇ − 𝑞𝑞
𝐶𝐶

= 𝐼𝐼𝐼𝐼,          (31) 
where 

𝐶𝐶 = 𝜀𝜀0𝑆𝑆
𝛿𝛿

.          (32) 
Since the cut edges are charged by induction current, then 

𝐼𝐼 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

.           (33) 
In the steady state, the acceleration of the ring center of mass is constant, so according to the 

equation of motion (18) and (19), the current strength is also constant. Differentiating (31) with (33) 
and (21) taken into account, we finally obtain the steady-state acceleration 

𝑎𝑎0 = 𝑔𝑔

�1+𝐵𝐵
2(2𝜋𝜋𝜋𝜋)2𝜀𝜀0𝑠𝑠

𝑚𝑚𝑚𝑚 �
.         (34) 

3.7 Differentiating (31) with (21) and (33) taken into account, we obtain 
𝐵𝐵𝐵𝐵 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐼𝐼

𝐶𝐶
+ 𝑅𝑅 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
.         (35) 

Dividing this equation by the equation of motion (18) and substituting (19), we obtain the 
differential equation for the current in the ring 

𝑅𝑅 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑔𝑔𝑔𝑔𝑔𝑔 − �1
𝐶𝐶

+ 𝐵𝐵2𝐿𝐿2

𝑚𝑚
� 𝐼𝐼        (36) 

with the initial condition 
𝐼𝐼(0) = 0.          (37) 

The solution of equation (36) with (37) is the function 
𝐼𝐼(𝑡𝑡) = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜀𝜀0𝑠𝑠𝑠𝑠

𝛿𝛿�1+𝐵𝐵
2(2𝜋𝜋𝜋𝜋)2𝜀𝜀0𝑠𝑠

𝑚𝑚𝑚𝑚 �
�1 − exp �− �1 + 𝐵𝐵2(2𝜋𝜋𝜋𝜋)2𝜀𝜀0𝑠𝑠

𝑚𝑚𝑚𝑚
� 𝛿𝛿
2𝜋𝜋𝜋𝜋𝜋𝜋𝜀𝜀0

𝑡𝑡��.   (38) 

Hence, 
𝐴𝐴2 = 2𝜋𝜋𝜋𝜋𝜋𝜋𝜀𝜀0𝑠𝑠𝑠𝑠

𝛿𝛿�1+𝐵𝐵
2(2𝜋𝜋𝜋𝜋)2𝜀𝜀0𝑠𝑠

𝑚𝑚𝑚𝑚 �
,         (39) 
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𝐵𝐵2 = − 2𝜋𝜋𝜋𝜋𝜋𝜋𝜀𝜀0𝑠𝑠𝑠𝑠

𝛿𝛿�1+𝐵𝐵
2(2𝜋𝜋𝜋𝜋)2𝜀𝜀0𝑠𝑠

𝑚𝑚𝑚𝑚 �
,        (40) 

𝛾𝛾2 = −�1 + 𝐵𝐵2(2𝜋𝜋𝜋𝜋)2𝜀𝜀0𝑠𝑠
𝑚𝑚𝑚𝑚

� 𝛿𝛿
2𝜋𝜋𝜋𝜋𝜋𝜋𝜀𝜀0

.       (41) 
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