
XV International Zhautykov Olympiad in Mathematics

Second day. Solutions

�4. An isosceles triangle ABC with AC = BC is given. Point D is chosen on the side AC. The circle
S1 of radius R with the center O1 touches the segment AD and the extensions of BA and BD over the
points A and D, respectively. The circle S2 of radius 2R with the center O2 touches the segment DC and
the extensions of BD and BC over the points D and C, respectively. Let the tangent to the circumcircle
of the triangle BO1O2 at the point O2 intersect the line BA at point F . Prove that O1F = O1O2.

Solution By condition, in the triangle ABC we have ∠A = ∠B. It is evident that ∠O1BO2 = ∠B/2.
Let ` be the straight line passing through O2 parallel to AC. By the problem condition ` touches S1 (say, at
a point N). Let also K be the tangency point of S1 and BA. Then the clockwise rotation about the point
O1 through the angle NO1K transposes ` to BA and thus transposes the point O2 to some point O ∈ BA.
Hence O1O = O1O2 and ∠OO1O2 = ∠NO1K = 180◦−∠A = 180◦−∠B, so ∠O1O2O = ∠B/2 = ∠O1BO2.
The latter does mean that the line O2O is the tangent to the circumcircle of 4BO1O2. Hence F = O, and
O1F = O1O2, as was to be proved.
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�5. Let n > 1 be a positive integer. A function f : I → Z is given, where I is the set of all integers coprime
with n. (Z is the set of integers). A positive integer k is called a period of the function f if f(a) = f(b) for
all a, b ∈ I such that a ≡ b (mod k). It is known that n is a period of f. Prove that the minimal period of
the function f divides all its periods.
Example. For n = 6, the function f with period 6 is de�ned entirely by its values f(1) and f(5). If
f(1) = f(5), then the function has minimal period Pmin = 1, and if f(1) 6= f(5), then Pmin = 3.



�6. On a polynomial of degree three it is allowed to perform the following two operations arbitrarily
many times:

(i) reverse the order of its coe�cients including zeroes (for instance, from the polynomial x3 − 2x2 − 3
we can obtain −3x3 − 2x+ 1);

(ii) change polynomial P (x) to the polynomial P (x+ 1).
Is it possible to obtain the polynomial x3 − 3x2 + 3x− 3 from the polynomial x3 − 2?
The answer is no.
Solution I. The original polynomial x3 − 2 has a unique real root. The two transformations clearly

preserve this property. If α is the only real root of P (x), then the �rst operation produces a polynomial
with root 1

α
, and the second operation gives a polynomial with root α − 1. Since the root of the original

polynomial is 3
√

2, and thar of the resulting polynomial is 1 + 3
√

2, the problem is reduced to the question
whether it is possible to obtain the latter number from the former by operations x 7→ 1

x
and x 7→ x − 1.

Let us apply one more operation x 7→ x−1 (so as to transform 3
√

2 to itself) and reverse all the operations.
It appears then that the number 3

√
2 is transformed to itself by several operations of the form x 7→ 1

x
and

x 7→ x + 1. It is easy to see that the composition of any number of such operations is a fractional-linear
function x 7→ ax+b

cx+d
, where a, b, c, d are non-negative integers and ad− bc = 1. Each operation x 7→ x + 1

increases a + b + c + d, and, since we started with this operation, the resulting function is not identical.
Thus 3

√
2 is transformed to itself by some such composition. This means however that 3

√
2 is a root of

non-zero polynomial x(cx+d)−ax− b with integral coe�cients and degree at most 2, which is impossible.
Solution II. The original polynomial has one real and two conjugate complex roots. We have seen

above that under the two operations these roots are subject to transforms x 7→ 1
x
and x 7→ x − 1. Note

that both imaginary roots of the original polynomial have negative real part. It is easy to check that this
property is preserved under the two operations. However the real parts of all the roots of the desired
polynomial are positive, a contradiction.

Solution III. For a polynomial P (x) = ax3 + bx2 + cx + d we de�ne ∆(P ) = 3ad − bc. The �rst
operation transforms P (x) to dx3 + cx2 + bx+ a and does not change ∆. The second operation transforms
P (x) to Q(x) = ax3 + (b+ 3a)x2 + (c+ 3a+ 2b)x+ (d+ a+ b+ c), for which ∆(Q) = 3(d+ a+ b+ c)a−
− (b+ 3a)(c+ 3a+ 2b) = ∆(P )− (2b2 + 6ab+ 6a2) < ∆(P ). Thus the permitted operation can not increase
∆. On the other hand, for the original polynomial ∆(P ) = −6, and for the resulting polynomial it must
be 0.


