X International Zhautykov Olympiad in Mathematics

Almaty, 2014
15 January, 2014, 9.00–13.30

Second day

(Each problem is worth 7 points)

4. Does there exist a polynomial P(x) with integral coefficients such that 
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5. Let U={1, 2,…, 2014}. For positive integers a, b, c we denote by f(a, b, c) the number of ordered 6-tuples of sets 
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 satisfying the following conditions: 

(i) 
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(ii) 
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(iii) 
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Prove that f(a,b,c) does not change when a, b, c are rearranged. 

6. Four segments divide a convex quadrilateral into nine quadrilaterals. The points of intersections of these segments lie on the diagonals of the quadrilateral (see figure). It is known that the quadrilaterals 1, 2, 3, 4 admit inscribed circles. Prove that the quadrilateral 5 also has an inscribed circle. 

[image: image10.png]]
Aze




_1451015691.unknown

_1451016100.unknown

_1451016187.unknown

_1451016234.unknown

_1451016176.unknown

_1451015928.unknown

_1451015144.unknown

_1451015445.unknown

_1451015093.unknown

