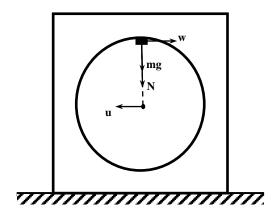
РЕШЕНИЕ ЗАДАЧ ТЕОРЕТИЧЕСКОГО ТУРА Задача 1 (10 баллов) 1A (3,5 балла)



Можно показать, что отрыв куба начинается в тот момент, когда шайба занимает положение, указанное на рисунке слева. Пусть в этот момент скорость центра куба массы M равна u, а w — есть скорость шайбы массы m относительно куба, направленная горизонтально. Так как в системе отсутствует трение, то сохраняется проекция полного импульса системы на горизонтальное направление

$$mv = Mu + m(u - w), (1)$$

а также выполняется закон сохранения энергии

$$\frac{mv^2}{2} = \frac{Mu^2}{2} + \frac{m}{2}(u - w)^2 + 2mgR.$$
 (2)

В мгновенной системе отсчета, связанной с кубом, шайба движется со скоростью w по окружности радиуса R и уравнение ее движения в проекции на радиальное направление имеет вид

$$N + mg = \frac{mw^2}{R}. (3)$$

Очевидно, что условие отрыва куба от плоскости стола в соответствие с третьим законом Ньютона имеет вид

$$N = Mg. (4)$$

Решая совместно систему уравнений (1)-(4), находим скорость шайбы

$$v = \sqrt{gR}\sqrt{5 + \frac{M}{m} + 4\frac{m}{M}} \,. \tag{5}$$

Из выражения (5) путем дифференцирования по M/m следует, что минимальная горизонтальная скорость достигается при

$$M/m=2 (6)$$

и равна

$$\mathbf{v}_{\min} = 3\sqrt{gR} \ . \tag{7}$$

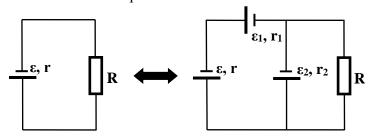
Схема оценивания

<u>№</u>	Содержание	баллы
1	Формула (1)	0,5
2	Формула (2)	0,5
3	Формула (3)	0,5
4	Формула (4)	0,5
5	Формула (5)	0,5
6	Формула (6)	0,5
7	Формула (7)	0,5

1В (4 балла)

Заменим бесконечную цепочку источников тока неким эффективным источником тока с э.д.с. ε и внутренним сопротивлением r. Тогда получится схема, изображенная на рисунке слева. Теперь отсоединим сопротивление R и добавим еще два источника тока, а затем

подсоединим обратно сопротивление R. Получится схема, изображенная на рисунке справа. Так как число ячеек с элементами бесконечно велико, то обе схемы должны быть эквивалентны при любой величине сопротивления R.



Из законов постоянного тока можно показать, что справедливы следующие два утверждения:

- 1. Пусть имеются два источника тока с ε_1 , r_1 и ε_2 , r_2 , соединенные последовательно. Тогда их можно заменить одним источником тока с $\varepsilon = \varepsilon_1 + \varepsilon_2$ и $r = r_1 + r_2$.
- 2. Пусть имеются два источника тока с ε_1 , r_1 и ε_2 , r_2 , соединенные параллельно. Тогда их можно заменить одним источником тока с $\varepsilon = (\varepsilon_1 r_2 + \varepsilon_2 r_1)/(r_1 + r_2)$ и $r = r_1 r_2/(r_1 + r_2)$.

Теперь, применяя 1 и 2 к правой схеме, мы должны получить левую схему, а значит должны выполняться соотношения

$$\varepsilon = \frac{(\varepsilon + \varepsilon_1)r_2 + \varepsilon_2(r + r_1)}{r + r_1 + r_2},\tag{1}$$

$$r = \frac{r_2(r + r_1)}{r + r_1 + r_2}. (2)$$

Отсюда находим решение

$$\varepsilon = \varepsilon_2 + \frac{\varepsilon_1}{2} \left(\sqrt{1 + \frac{4r_2}{r_1}} - 1 \right) = 3,0 \,\mathrm{B},\tag{3}$$

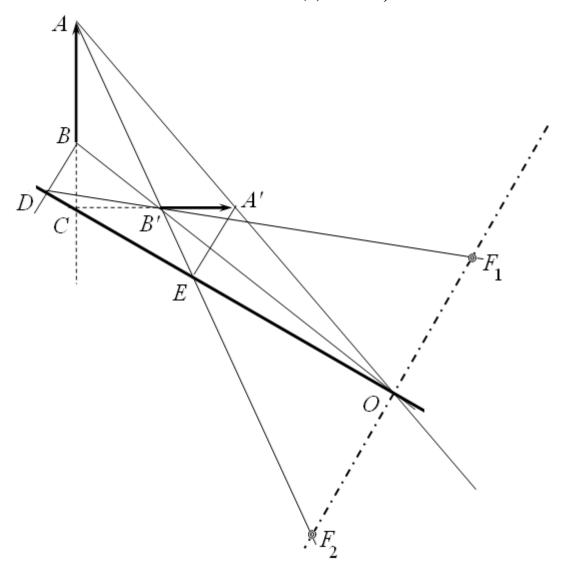
$$r = \frac{r_1}{2} \left(\sqrt{1 + \frac{4r_2}{r_1}} - 1 \right) = 1,0 \text{ Om.}$$
(4)

Значит, сила тока, протекающего через сопротивление R, равна

$$I = \frac{\mathcal{E}}{R+r} = 1,0 \,\text{A}. \tag{5}$$

Схема оценивания

No	Содержание	баллы
1	Эквивалентная схема	1,0
2	Факт 1	0,5
3	Факт 2	0,5
4	Формула (1)	0,5
5	Формула (2)	0,5
6	Формула (3)	0,25
7	Формула (4)	0,25
8	Формула (5)	0,5



Все лучи, выходящие из точки A, после преломления в линзе проходят через точку A', все лучи, выходящие из точки B, после преломления в линзе проходят через точку B'. Лучи, попадающие в оптический центр линзы, не изменяют своего направления. Поэтому точка пересечения прямых, проходящих через точки A A' и B B' есть оптический центр линзы О. Если луч проходит через обе точки A и B, то после преломления в линзе он проходит через точки A' и B'. Следовательно, точка C пересечения прямых AB и A'B' лежит в плоскости линзы. Таким образом, плоскость линзы проходит через точки О и С. Перпендикуляр к плоскости линзы, проходящий через оптический центр является главной оптической осью линзы. Дальнейшие построения являются традиционными: через точку B проводим луч BD, параллельный главной оптической оси, после преломления в линзе он (или его продолжение) проходит через точку B'. Продолжая его до пересечения с главной оптической осью, находим один из главных фокусов F₁. Аналогично находим второй главный фокус F₂. Построение показывает, что линза – рассеивающая.

Задача 2 (10 баллов) Электропроводность металлов

Закон Ома

1 [1 балл]

По закону Джоуля-Ленца, мощность, выделяемая в проводнике в виде тепла, равна

$$P = \frac{U^2}{R},\tag{1}$$

а значит объемная плотность тепловой мощности $P_{\scriptscriptstyle V}$ равна

$$P_V = \frac{U^2}{RV} = \frac{U^2}{RSI}.$$
 (2)

Используя

$$R = \rho \frac{l}{S} = \frac{1}{\sigma} \frac{l}{S} \quad \text{w} \quad E = \frac{U}{l}, \tag{3}$$

получаем

$$P_{V} = \sigma E^{2}. \tag{4}$$

Модель Друде

2 [1 балл]

Второй закон Ньютона для свободно движения электрона в постоянном электрическом поле имеет вид

$$m\mathbf{a} = \mathbf{F} = -e\mathbf{E} . ag{5}$$

Из уравнения (5) следует, что за время τ электрон пройдет расстояние

$$s = \frac{a\tau^2}{2},\tag{6}$$

а значит средняя скорость движения электрона равна

$$u = \frac{s}{\tau} = \frac{a\tau}{2} = \frac{eE\tau}{2m},\tag{7}$$

или в векторном виде

$$\mathbf{u} = -\frac{e\tau}{2m} \mathbf{E} . \tag{8}$$

3 [1 балл]

Плотность электрического тока зависит от концентрации, заряда и средней скорости движения частиц следующим образом

$$\mathbf{j} = -ne\mathbf{u} = \frac{e^2 n\tau}{2m} \mathbf{E} \,, \tag{9}$$

то есть справедлив закон Ома, при этом удельная проводимость равна

$$\sigma = \frac{e^2 n\tau}{2m},\tag{10}$$

4 [1 балл]

Каждый электрон при столкновении с ионом передает ему свою кинетическую энергию перед столкновением, равную

$$E_k = \frac{mu_{\text{max}}^2}{2} = \frac{m}{2} \left(\frac{eE\tau}{m}\right)^2. \tag{11}$$

По определению концентрации, в одном кубическом метре проводника находится n электронов, каждый из которых передает свою кинетическую энергию (11) за время τ . Значит, количество теплоты Q_{V} передают электроны кристаллической решетке в 1 M^{3} проводника за 1 c равно

$$Q_{V} = \frac{nE_{k}}{\tau} = \frac{nmu^{2}}{2\tau} = \frac{e^{2}n\tau}{2m}E^{2} = \sigma E^{2}.$$
 (12)

Это выражение совпадает с (4), тем самым в модели Друде выводится закон Джоуля-Ленца.

Магнетосопротивление

5 [1 балл]

В присутствие магнитного поля уравнение движения электрона имеет вид

$$m\frac{d\mathbf{u}}{dt} = -e\mathbf{E} - e\mathbf{u} \times \mathbf{B} \,. \tag{13}$$

В проекциях на оси координат уравнение (13) имеет вид

$$m\frac{du_x}{dt} = eE + eBu_y, (14)$$

$$m\frac{du_{y}}{dt} = -eBu_{x}, (15)$$

$$m\frac{du_z}{dt} = 0. ag{16}$$

Из уравнения (16) следует, что движение электрона происходит в плоскости Oxy. Сделаем в уравнениях (14)-(15) замену $u_x^{'} = u_x$, $u_y^{'} = u_y + E/B$, тогда получим

$$m\frac{du_{x}^{'}}{dt} = eBu_{y}, (17)$$

$$m\frac{du_{y}^{'}}{dt} = -eBu_{x}^{'}. ag{18}$$

Из уравнений (17) и (18) находим общее решение в виде уравнений гармонических колебаний

$$u_x = A\cos(\omega t + \alpha), \tag{19}$$

$$u_{y} = A\sin(\omega t + \alpha),$$
 (20)

или для первоначальных переменных

$$u_{x} = A\cos(\omega t + \alpha), \qquad (21)$$

$$u_{y} = A\sin(\omega t + \alpha) - \frac{E}{R},\tag{22}$$

где $\omega = eB/m$.

Из начальных условий $u_x=0$ и $u_y=0$, получаем значения постоянных A=E/B и $\alpha=\pi/2$. Подстановка в (21) и (22), дает

$$u_{x}(t) = \frac{E}{B} \sin\left(\frac{eB}{m}t\right),\tag{23}$$

$$u_{y}(t) = -\frac{E}{B} \left[1 - \cos\left(\frac{eB}{m}t\right) \right],\tag{24}$$

6 [2 балла]

При малых значениях индукции магнитного поля выражение (23) принимает вид

$$u_{x} = \frac{eE}{m}t - \frac{e^{3}EB^{2}}{6m^{3}}t^{3}.$$
 (25)

Значит путь, пройденный электроном вдоль оси OX за время au равен

$$s = \frac{eE}{2m}\tau^2 - \frac{e^3EB^2}{24m^3}\tau^4,\tag{26}$$

а средняя скорости

$$u_{av} = \frac{s}{\tau} = \frac{eE}{2m}\tau - \frac{e^3EB^2}{24m^3}\tau^3.$$
 (27)

Поэтому относительное изменение проводимости равно

$$\frac{\Delta\sigma}{\sigma} = \frac{neu_{av}(B) - neu_{av}(B=0)}{neu_{av}(B=0)} = -\frac{1}{12} \left(\frac{e\tau B}{m}\right)^2,\tag{28}$$

откуда получаем

$$\mu = -\frac{1}{12} \left(\frac{e\tau}{m}\right)^2, \qquad \nu = 2. \tag{29}$$

Эффект Холла

7 [0,5 балла]

Сила Лоренца, действующая на электроны направлена к нижней грани, следовательно на ней будут накапливаться электроны.

8 [1,5 балла]

Так как электроны накапливаются на нижней грани, значит холловская напряженность электрического поля направлена против направления оси Oy. В проекциях на оси координат уравнение (13) имеет вид

$$m\frac{du_x}{dt} = eE + eBu_y, (30)$$

$$m\frac{du_{y}}{dt} = eE_{H} - eBu_{x}, \tag{31}$$

$$m\frac{du_z}{dt} = 0. ag{32}$$

Из уравнения (32) следует, что движение электрона происходит в плоскости Oxy. Сделаем в уравнениях (30)-(31) замену $u_x = u_x - E_H / B$, $u_y = u_y + E / B$, тогда получим

$$m\frac{du_{x}^{'}}{dt} = eBu_{y}, (33)$$

$$m\frac{du_{y}^{'}}{dt} = -eBu_{x}^{'}. \tag{34}$$

Из уравнений (33) и (34) находим общее решение в виде уравнений гармонических колебаний

$$u_x = A\cos(\omega t + \alpha),$$
 (35)

$$u_{v} = A\sin(\omega t + \alpha),$$
 (36)

или для первоначальных переменных

$$u_{x} = A\cos(\omega t + \alpha) + \frac{E_{H}}{B},\tag{37}$$

$$u_{y} = A\sin(\omega t + \alpha) - \frac{E}{R},$$
(38)

где $\omega = eB/m$.

Из начальных условий $u_{_{\scriptscriptstyle X}}=0$ и $u_{_{\scriptscriptstyle Y}}=0$, получаем следующее решение

$$u_{x}(t) = \frac{E}{B}\sin\left(\frac{eB}{m}t\right) + \frac{E_{H}}{B}\left[1 - \cos\left(\frac{eB}{m}t\right)\right],\tag{39}$$

$$u_{y}(t) = \frac{E_{H}}{B} \sin\left(\frac{eB}{m}t\right) - \frac{E}{B} \left[1 - \cos\left(\frac{eB}{m}t\right)\right]. \tag{40}$$

9 [1 балл]

При малых значениях индукции магнитного поля, условие отсутствия смещения по оси Oy $y(\tau) = 0$ через время τ дает

$$\int_{0}^{\tau} u_{y}(t)dt = 0 \quad \Rightarrow \quad E_{H} = \frac{eE\tau}{3m}B, \tag{41}$$

или

$$E_H = \frac{2j}{3ne}B,\tag{42}$$

Схема оценивания

№	Содержание	баллы
1	Закон Джоуля-Ленца (1)	0,25
2	Объемная плотность тепловой мощности (2)	0,25
3	Формулы (3)	0,25
4	Окончательная формула (4)	0,25
5	Уравнение движения (5)	0,25
6	Пройденное расстояние (6)	0,25
7	Средняя скорость движения (7)	0,25
8	Вектор средней скорости движения (8)	0,25
9	Плотность тока (9)	0,5
10	Удельная проводимость (10)	0,5
11	Кинетическая энергия электрона (11)	0,5
12	Количество теплоты (12)	0,5
13	Уравнение движения (13)	0,25
14	Уравнения движения (14)-(16)	0,25
15	Выражение для скорости (23)	0,25
16	Выражение для скорости (24)	0,25
17	Разложение для скорости (25)	0,25
18	Путь (26)	0,25
19	Средняя скорость (27)	0,5
20	Результат (29)	2*0,5
21	Правильная грань указана	0,5
22	Уравнения движения (30)-(32)	0,5

23	Выражение для скорости (39)	0,5
24	Выражение для скорости (40)	0,5
25	Холловская напряженность (41)	0,5
26	Холловская напряженность (42)	0,5

Задача 3 (10 баллов)

1 [1 балл] Постоянная C находится из условия нормировки, так как общее число частиц равно N:

$$\sum_{n=1}^{\infty} N_n = N. \tag{1}$$

Подставляя выражение для функции распределения и проводя суммирование, получим

$$N = \sum_{n=1}^{\infty} N_n = \sum_{n=1}^{\infty} C \exp\left(-n\frac{\varepsilon}{k_B T}\right) = C \frac{\exp\left(-\frac{\varepsilon}{k_B T}\right)}{1 - \exp\left(-\frac{\varepsilon}{k_B T}\right)} \implies N_n = N \frac{1 - \exp\left(-\frac{\varepsilon}{k_B T}\right)}{\exp\left(-\frac{\varepsilon}{k_B T}\right)} \exp\left(-n\frac{\varepsilon}{k_B T}\right)$$

$$(2)$$

2 [3 балла] Внутренняя энергия газа равна сумме кинетических энергий всех атомов:

$$U = \sum_{n=1}^{\infty} E_{n} N_{n} = \sum_{n=1}^{\infty} Cn\varepsilon \exp\left(-n\frac{\varepsilon}{k_{B}T}\right) = C \frac{\exp\left(-\frac{\varepsilon}{k_{B}T}\right)}{\left(1 - \exp\left(-\frac{\varepsilon}{k_{B}T}\right)\right)^{2}} =$$

$$= N \frac{\varepsilon}{1 - \exp\left(-\frac{\varepsilon}{k_{B}T}\right)}$$
(3)

В классическом пределе $k_B T >> \varepsilon$ показатель экспоненты является малым, поэтому можно использовать приближенную формулу $\exp\left(-\frac{\varepsilon}{k_B T}\right) \approx 1 - \frac{\varepsilon}{k_B T}$. В этом случае получаем $U = N \, k_B T \ . \tag{4}$

При малых температурах малой является сама экспонента $\exp\left(-\frac{\varepsilon}{k_{_{B}}T}\right)$ << 1 , поэтому

$$U = N \frac{\varepsilon}{1 - \exp\left(-\frac{\varepsilon}{k_{\scriptscriptstyle B}T}\right)} \approx N\varepsilon \left(1 + \exp\left(-\frac{\varepsilon}{k_{\scriptscriptstyle B}T}\right)\right). \tag{5}$$

3 [3 балла] Теплоемкость при постоянном объеме равна

$$C_{V} = \frac{\partial U}{\partial T}.$$
 (6)

В общем случае

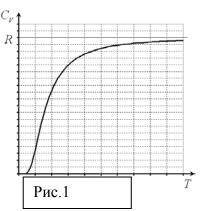
$$C_{V} = \frac{\partial U}{\partial T} = \frac{N_{A}\varepsilon}{\left(1 - \exp\left(-\frac{\varepsilon}{k_{B}T}\right)\right)^{2}} \exp\left(-\frac{\varepsilon}{k_{B}T}\right) \frac{\varepsilon}{k_{B}T^{2}} = R\left(\frac{\varepsilon}{k_{B}T}\right)^{2} \frac{\exp\left(-\frac{\varepsilon}{k_{B}T}\right)}{\left(1 - \exp\left(-\frac{\varepsilon}{k_{B}T}\right)\right)^{2}}$$
(7)

Чтобы найти приближенные выражения в двух предельных случаях проще использовать разложения, полученные в п. 2. Так, при высоких температурах

$$k_B T \gg \varepsilon$$

$$U = N_A k_B T \implies C_V = R$$
(8)

то есть теплоемкость является постоянной. Здесь N_A - постоянная Авогадро, $N_A \, k_B = R$ - газовая постоянная. При низких температурах



$$U = N_A \varepsilon \left(1 + \exp\left(-\frac{\varepsilon}{k_B T}\right) \right) \implies$$

$$C_{V} = N_{A} \varepsilon \frac{\varepsilon}{k_{B} T^{2}} \exp\left(-\frac{\varepsilon}{k_{B} T}\right) = R\left(\frac{\varepsilon}{k_{B} T}\right)^{2} \exp\left(-\frac{\varepsilon}{k_{B} T}\right)$$
(9)

Отсюда видно, при стремлении температуры к нулю, теплоемкость стремится к нулю. Схематический график зависимости показан на рис. 1.

4 [1 балл] Расчет давления газа может быть проведен различными способами. Например, средняя сила, действующая на стенку со стороны одного атома равна импульсу, передаваемому стенке, деленному на время между ударами этого атома о стенку

$$\left\langle f_{n}\right\rangle = \frac{\Delta p}{\Delta \tau} = \frac{2mv_{n}}{2L/v_{n}} = \frac{mv_{n}^{2}}{L} = 2\frac{E_{n}}{L} \tag{10}$$

Для вычисления давления необходимо просуммировать эти силы

$$P = \frac{\sum_{n} N_{n} \left\langle f_{n} \right\rangle}{S} = \frac{2}{SL} \sum_{n=1}^{\infty} N_{n} E_{n} = 2 \frac{U}{V}$$
(11)

Подставляя выражение для внутренней энергии газа (3), получим

$$P = 2\frac{N}{V} \frac{\varepsilon}{1 - \exp\left(-\frac{\varepsilon}{k_{\scriptscriptstyle B}T}\right)}.$$
 (12)

В предельных случаях следует использовать полученные ранее выражения для внутренней энергии.

 Π ри $k_{\scriptscriptstyle B}T >> \varepsilon$

$$P = 2\frac{N}{V}k_BT, (13)$$

то есть давление пропорционально абсолютной температуре.

При низких температурах

$$P = 2\frac{N\varepsilon}{V} \left(1 + \exp\left(-\frac{\varepsilon}{k_B T}\right) \right). \tag{14}$$

При температуре стремящейся к нулю давление стремиться к постоянному значению

$$P_0 = 2\frac{N\varepsilon}{V} \,. \tag{15}$$

Схематический график зависимости давления от температуры показан на рис. 2.

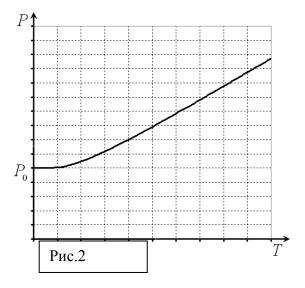


Схема оценивания

No	Содержание	баллы	
1	Условие нормировки (1)	0,5	1
2	Вычисление числа частиц (2)	0,5	1
3	Общее выражение для внутренней энергии U	0,5	
4	Вычисление внутренней энергии U (3)	1,0	3
5	Вычисление классического предела U (4)	0,5	3
6	Вычисление предела низких температур U (5)	1,0	
7	Общее выражение для теплоемкости C_V (6)	0,5	
8	Вычисление теплоемкости С_V (7)	1,0	
9	Вычисление классического предела C_V (8)	0,5	3
10	Вычисление предела низких температур С_V (9)	0,5	
11	Схематический график C_V	0,5	
12	Общее выражение для средней силы (10)	0,5	
12	Общее выражение для давления Р (11)	0,5	
13	Вычисление давления Р (12)	0,5	Ī
14	Вычисление классического предела Р (13)	0,5	3
15	Вычисление предела низких температур Р (14)	0,5	
16	Схематический график Р	0,5	