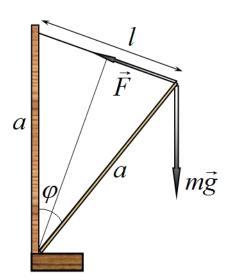

РЕШЕНИЕ ЗАДАЧИ ЭКСПЕРИМНЕТАЛЬНОГО ТУРА

Часть 1

Результаты измерений приведены в Таблице 1. В последнем столбце приведены рассчитанные значения относительной деформации $\varepsilon = (l-l_0)/l_0$. График зависимости относительной деформации от нагрузки приведен на Рис. 1.

Число				
грузиков,				
N	L, см	${\cal E}$		
0	20,8	0,00		
1	23,1	0,11		
2	28,1	0,35		
3	37,2	0,79		
4	49,7	1,39		
5	61,3	1,95		
6	71,2	2,42		
5	65,2	2,13		
4	55,3	1,66		
3	42,1	1,02		
2	31,5	0,51		
1	24,6	0,18		
0	20,8	0,00		
Таблица 1				


Часть 2

2.1 Приведенное условие равновесия следует из условия равенства моментов сил упругости и тяжести

$$F(l)a\cos\frac{\varphi}{2} = mga\sin\varphi,$$

где φ - угол отклонения линейки от вертикали. Учитывая, что $\sin\varphi=2\sin\frac{\varphi}{2}\cos\frac{\varphi}{2}$, а $2a\sin\frac{\varphi}{2}=l$, получаем условие (1).

2.2 Для построения указанных графиков необходимо перенормировать длину резинового жгута для каждого значения силы: $l=\frac{l_0}{L_0}L$. Графики функции $f\left(l\right)=mg\frac{l}{a}$ являются прямыми линиями, проходящими через начало координат. Требуемые построения проведены на рис. 2.

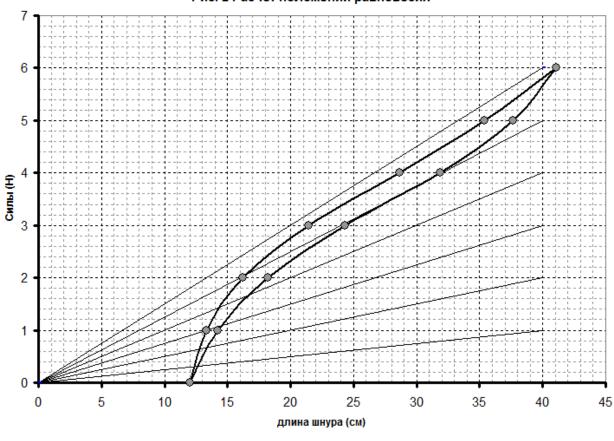


Рис. 2 Расчет положений равновесия

Рисунок 2

Положениям равновесия соответствуют точки пересечения графиков.

В Таблице 2 приведены значения положений равновесия, найденные с помощью графиков на Рис. 2 и измеренные экспериментально. На Рис. 3 построены графики этих зависимостей – совпадение между ними вполне удовлетворительное.

Число				
грузиков,				
N	L, эксп	L, расч		
0	11,6	12,0		
1	11,7	12,5		
2	12,0	12,7		
3	13,1	13,2		
4	14,6	14,0		
5	18,□	16,5		
6	51,0	47,0		
5	48,7	40,0		
4	18,2	17,0		
3	14,6	14,0		
2	13,0	13,5		
1	11,8	12,5		
0	11,6	12,0		
Таблица 2				

Рисунок 3

Часть 3. Бистабильность.

Бистабильность возможна, когда прямая $f(l) = mg \frac{l - \delta}{a}$ имеет три точки пресечения с графиком зависимости силы упругости. Возможный вариант показан на рис. 4. Отметим, что среднее положение равновесия является неустойчивым!

При имеющемся оборудовании бистабильность хорошо наблюдается при 5 или 6 грузах.

Положению равновесия соответствует две длины шнура 13 - 14 см и 36 - 44 см.

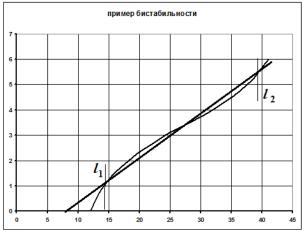


Рисунок 4

Схема оценивания

	Содержание	Баллы
	Часть 1. Растяжение.	4,5
1.1	Проведение измерений:	
	- проведены измерения (12 точек);	1
	- получена петля гистерезиса;	0,5
	- получены значения с погрешностью не более 20%	1,0
	- получены значения с погрешностью не более 30%	(0,5)
1.2	Построение графика зависимости относительного удлинения от	
	нагрузки:	
	- расчет относительного удлинения для всех экспериментальных	
	точек;	1
	- построение графика (оси подписаны и оцифрованы; точки	
	нанесены в соответствии с таблицей; проведена сглаживающая	
	кривая)	1
	Часть 2. Равновесие.	7,5
2.1	Доказательство условия равновесия:	
	- момент силы тяжести; момент силы упругости;	0,5
	- геометрические соотношения и тригонометрические	
	преобразования;	0,5
2.2	Теоретический расчет длины шнура:	
	- формула для расчета длины по относительному удлинению;	0,5
	- расчет длин для всех значений силы упругости;	0,5
	- построение графика зависимости силы от длины (оси	
	подписаны и оцифрованы, точки нанесены, проведены	
	сглаживающие кривые);	0,5
	- построение 6 прямых;	0,5
2.3	-сняты с графика значения длины (12 точек);	0,5
	- построен график теоретической зависимости длины от массы	
	грузов (оси подписаны и оцифрованы, точки нанесены,	
	проведены сглаживающие кривые);	0,5
2.4	Проведение измерений:	
	- проведены измерения (10 точек);	1

	- получена петля гистерезиса (различия при 4 или 5 грузах);	0,5
	- получены значения с погрешностью не более 20%;	1,0
	- получены значения с погрешностью не более 50%;	(0,5)
2.5	Построен график экспериментальной зависимости:	
	- нанесены точки в соответствии с данными таблицы;	0,5
	- проведены сглаживающие кривые.	0,5
Часть 3. Бистабильность.		3
3.1	Качественное объяснение бистабильности:	
	- построен схематический график зависимости силы упругости от	
	длины;	0,5
	- построена смещенная прямая, имеющая три точки пересечения	
	с предыдущей кривой;	0,5
	- отмечены точки устойчивого равновесия;	0,5
3.2	Найдены два положения равновесия:	
	- при массе грузов 500 г (допустимо 600 г);	1
	- измерены длины резинки в положении равновесия в указанных	
	диапазонах)	0,5