1. Let α , β , γ be the angles of a triangle opposite to the sides a, b, c respectively. Prove the inequality

$$2\left(\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma\right) \ge \frac{a^{2}}{b^{2} + c^{2}} + \frac{b^{2}}{a^{2} + c^{2}} + \frac{c^{2}}{a^{2} + b^{2}}.$$

Solution. By the Law of Sines, RHS equals $\frac{\sin^2\alpha}{\sin^2\beta+\sin^2\gamma}+\frac{\sin^2\beta}{\sin^2\alpha+\sin^2\gamma}+\frac{\sin^2\gamma}{\sin^2\alpha+\sin^2\beta}$. Applying Cauchy-Bunyakowski inequality we have

$$\sin^2 \alpha = \sin^2(\beta + \gamma) = (\sin \beta \cos \gamma + \sin \gamma \cos \beta)^2 \le (\sin^2 \beta + \sin^2 \gamma)(\cos^2 \gamma + \cos^2 \beta),$$

therefore $\cos^2\beta + \cos^2\gamma \ge \frac{\sin^2\alpha}{\sin^2\beta + \sin^2\gamma}$. Adding similar inequalities for $\cos^2\gamma + \cos^2\alpha$ and $\cos^2\alpha + \cos^2\beta$ we get the desired result.

2. Points N, K, L lie on the sides AB, BC, CA of a triangle ABC respectively so that AL = BK and CN is the bisector of the angle C. The segments AK and BL meet at the point P. Let I and J be the incentres of the triangles APL and BPK respectively. The lines CN and IJ meet at point Q. Prove that IP = JQ.

Solution. The case CA = CB is trivial. If $CA \neq CB$, we may suppose, without loss of generality, that CN meets the segment PK.

Let the circumcircles ω_1 and ω_2 of the triangles APL and BPK respectively meet again at point T. Then

$$\angle LAT = \angle TPB = \angle TKB.$$
 (1)

and $\angle ALT = \angle APT = \angle TBK$, that is, $\triangle ALT = \triangle KBT$, hence

$$AT = TK. (2)$$

It follows from (1) that the quadrilateral ACKT is cyclic; together with (2)this means that $\angle ACT = \angle TCK$, i.e. T lies on the bisector of CN.

Let IJ meet ω_1 and ω_2 at I_1 and J_1 respectively. Since ω_1 and ω_2 have equal radii and AL = BK, the triangles ALI_1 and BKJ_1 are equal. We use Mansion's lemma: the midpoint of arc XY of the circumcircle of XYZ lies at equal distances from the ends of this arc and the incentre. It follows from this lemma that $I_1I = I_1L = J_1K = J_1J$. Moreover, $\angle PI_1T = \angle PAT = \angle PKT =$ $\angle PJ_1T$, therefore, $I_1T=J_1T$. Thus T lies on the median bisector of I_1J_1 and on the median bisector of IJ.

Figure 1: image

It remains to prove that T lies on the median bisector of PQ. Let $R = AK \cap CT$. Then $\angle ART = \angle RAC + \angle ACR =$ $\angle RAC + \angle AKT = \angle RAC + \angle KAT = \angle LAT = \angle BPT$. Since PQ bisects the angle RPB, $\angle PQT = \angle PRT + \angle RPQ = \angle RAC + \angle R$ $\angle PBT + \angle BPJ = \angle TPQ$, therefore T belongs to the median bisector of PQ and IP = JQ.

3. Prove that there exist infinitely many pairs (m,n) of positive integers such that m+n divides $(m!)^n+(n!)^m+1$. **Solution.** We shall find a pair such that m+n=p is prime and n is even. Applying Wilson's theorem we have

$$m! = (p-n)! = \frac{(p-1)!}{(p-n+1)\dots(p-2)(p-1)} \equiv \frac{-1}{-(n-1)\dots(-2)(-1)} \equiv \frac{1}{(n-1)!} \equiv \frac{n}{n!} \pmod{p}.$$

It follows from Fermat's Little Theorem that $(n!)^p \equiv n! \pmod{p}$, therefore

$$(m!)^n + (n!)^m + 1 \equiv \left(\frac{n}{n!}\right)^n + (n!)^{p-n} + 1 \equiv \frac{n^n + n! + (n!)^n}{(n!)^n} \pmod{p};$$

thus it suffices to prove that the number $n^n + n! + (n!)^n$ has a prime divisor p > n for infinitely many even n.

We prove that this condition is satisfied, for instance, by all the numbers of the form n = 2q, where q > 2 is prime. Let $A = (2q)^{2q} + (2q)! + ((2q)!)^{2q}$. For a prime p and integer k we denote by $v_p(k)$ the largest integer ℓ such that p^{ℓ} divides k.

If r < 2q is prime and $r \notin \{2, q\}$ then $A \equiv (2q)^{2q} \not\equiv 0 \pmod{r}$. The largest degree of q dividing (2q)! is q^2 , while for $(2q)^{2q}$ and $((2q)!)^{2q}$ it is 2q and 4q respectively, therefore $v_q(A)=2$.

Finally, $v_2((2q)!) = \left[\frac{2q}{2}\right] + \left[\frac{2q}{4}\right] + \left[\frac{2q}{8}\right] + \cdots < \frac{2q}{2} + \frac{4}{4} + \frac{2q}{8} + \cdots = 2q$, so $v_2((2q)!) < v_2((2q)!) < v_2((2q)!)$ and obviously $v_2((2q)!) < v_2((2q)!^{2q})$, thus $v_2(A) \le 2q - 1$. On the other hand, $A > (2q)^{2q} > 2^{2q-1}q^2$, therefore A has a prime divisor p > 2q, q.e.d.