4. Determine the maximum integer n such that for each & < % there are two positive divisors of n with
difference k.

Solution. The answer is 24. This number obviously satisfies the condition: 1 = 2—1, 2 = 4 — 2,
J=6-3,4=8-4,5=8-3,6=8-2,7=8-1,8=12-4,9=12-3,10=12-2, 11 -12-1,
12 =24 —12.
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Suppose n > 24 satisfies the condition. If n is odd, it has no divisors between n and %, therefore “5=
must have the form n — d, where d divides n. But then d = ”T‘H clearly does not divide n. Thus n is even.
If 4 <k <5 and k=dy —dz, where d; and ds divide n, then d; = 5 (since obviously d; > %, and for

d; = n the number dy must be greater than %). Therefore, for every such k& the number % — k divides n.

This means that n is divisible by all positive integers not exceeding %. Since n > 24, it is divisible by 3 and
4 and therefore by 12.

The numbers & and % — 1 are coprime and divide n. Therefore their product also divides n, and

n > % (% — 1), that is, n < 42. Since 12|n, it remains to check the number 36, which is not divisible by
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< % and therefore does not satisfy the condition.



5. Let A, be the set of partitions of the sequence 1, 2, ..., n into several subsequences such that
every two neighbouring terms of each subsequence have different parity, and B, the set of partitions of
the sequence 1, 2, ..., n into several subsequences such that all the terms of each subsequence have the
same parity (for example, the partition {(1,4,5,8),(2,3),(6,9),(7)} is an element of Ag, and the partition
{(1,3,5),(2,4),(6)} is an element of Bg).

Prove that for every positive integer n the sets A, and B,4; contain the same number of elements.

Solution. To prove that |A,| = |B,41| we construct a bijection between the two types of partitions.

Let A be a partition of the first type, that is, the elements of each subsequence in A have alternating
parities. We map this partition to the partition B defined by the following rule:

Two numbers x < y are adjacent in some subsequence in A if and only if x and y + 1 are adjacent in
some subsequence in B.

For example, the partition {(1,4,7,8),(2,5,10),(3,6),(9)} € A1o is mapped to the partition {(1,5,11),
(2,6),(4,8),(3,7,9),(10)} € By;.

It follows immediately that all the terms of each subsequence in B have the same parity, that 1is,
B e Bn+1.

Transforming each pair (z, z) of consecutive terms in any partition B € Bj,41 into pair (z,z — 1) (where
obviously # < z — 1 and the numbers # and z — 1 have different parity) we construct the unique 4 € A4,
which maps to B. Thus our mapping is a bijection.



6. The area of a convex pentagon ABCDE is S, and the circumradii of the triangles ABC, BCD,
CDFE, DEA, FAB are Ry, Ro, R, R4, Rs. Prove the inequality
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Ri+Re+RI+ R+ RE> —5— 5
PRI T g sin? 1080
Solution. First we prove the following
Lemma 1. In a convex n-gon A; A, ... A, with area S we have

45 < ApAs - R4+ A1As - Ro+ ...+ Ap_141 - Ry,

where R; is the circumradius of the triangle A;_1A; A; 41, Ao = An, Any1 = Ap.

Let M; be the midpoint of A;A;41 for ¢ = 1,...,n. For each ¢ we consider the quadrilateral formed
by the segments A; M; and A;M;_1 and the perpendiculars to this segments drawn through M; and M;_1,
respectively. We claim that these n quadrilateral cover the n-gon. Indeed, let P be a point inside the
n-gon. Let PAj be the minimum among the distances PA;, PA,y, ..., PA,. We have PAp < PAg4, and
PA, < PAg_1:1, therefore P belongs to the n-gon and to each of the two half-planes containing Ay and
bounded by the perpendicular bisectors to AxAg41 and AxAr_11, that is, to the k-th quadrilateral. To
complete the proof it remains to note that the area of the i-th quadrilateral does nor exceed % . % - R;.

For our problem it follows that 45 < 2R%sin ZA; +2RZsin ZAs + ...+ 2R2sin ZAs. Applying Cauchy-

Buniakowsky inequality, we obtain

2S5 < Risin LAy + R3sin ZAs + ...+ Risin LA5 < \/(R;1+...+Rg)(sm24A1 4 ...+ sin? ZA45) <

< \/5(R;1+ ...+ R)sin? 108°,
thus

452 4 4 4
W<R1+R2++R5

In the above inequality we made use of the following

Lemma 2. If a1, as, ..., as are angles of a convex pentagon, then sin oy + ...+ sin® a5 < 5sin® 108°.

The sum in question does not depend on the order of the angles, therefore we may assume a1 < as <
N < 5.

If oy = 108°, then ay = ... = a5 = 108°, and the inequality turns to equality.

If ay < 108°, then a5 > 108°. Note that oy + a5 < 270° (if ay + a5 > 270°, then ay + az + ag < 270°,
therefore ay < 90°, a fortiori a; < 90° and thus «s > 180°, a contradiction). Then we have

sin? 108° + sin?(ay + a5 — 108°) — sin oy — sin? a5 = 2 cos(ay + as) sin(a; — 108°) sin(as — 108°) > 0.

It means that changing the angles «; by 108° and a5 by a1 + a5 — 108° increases the sum of squares of the
sines. Iterating this operation, we shall make all the angles equal to 108°, thus proving the inequality.



